首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present work is to test the sensing behaviour of tin dioxide nanowires, which have been grown directly onto a sensing device. This device consists in an alumina substrate provided with platinum interdigitated microelectrodes and a Pt heater on the reverse side. The nanowire growing process based on a vapour-liquid-solid method consists of three steps: deposition of a tin thin film by DC sputtering, a 5 nm-thick Au layer deposition and an annealing treatment in the presence of oxygen for the growth of the SnO2 nanowires.These samples have been tested under different concentrations of formaldehyde (HCHO), showing a high sensitivity and very short response and recovery times even at low operating temperatures (130 °C).  相似文献   

2.
By combining two kinds of solution‐processable two‐dimensional materials, a flexible transistor array is fabricated in which MoS2 thin film is used as the active channel and reduced graphene oxide (rGO) film is used as the drain and source electrodes. The simple device configuration and the 1.5 mm‐long MoS2 channel ensure highly reproducible device fabrication and operation. This flexible transistor array can be used as a highly sensitive gas sensor with excellent reproducibility. Compared to using rGO thin film as the active channel, this new gas sensor exhibits much higher sensitivity. Moreover, functionalization of the MoS2 thin film with Pt nanoparticles further increases the sensitivity by up to ~3 times. The successful incorporation of a MoS2 thin‐film into the electronic sensor promises its potential application in various electronic devices.  相似文献   

3.
A new technique is reported for the transformation of smooth nonpolar ZnO nanowire surfaces to zigzagged high‐index polar surfaces using polycrystalline ZnO thin films deposited by atomic layer deposition (ALD). The c‐axis‐oriented ZnO nanowires with smooth nonpolar surfaces are fabricated using vapor deposition method and subsequently coated by ALD with a ZnO particulate thin film. The synthesized ZnO–ZnO core–shell nanostructures are annealed at 800 °C to transform the smooth ZnO nanowires to zigzagged nanowires with high‐index polar surfaces. Ozone sensing response is compared for all three types of fabricated nanowire morphologies, namely nanowires with smooth surfaces, ZnO–ZnO core–shell nanowires, and zigzagged ZnO nanowires to determine the role of crystallographic surface planes on gas response. While the smooth and core–shell nanowires are largely non‐responsive to varying O3 concentrations in the experiments, zigzagged nanowires show a significantly higher sensitivity (ppb level) owing to inherent defect‐rich high‐index polar surfaces.  相似文献   

4.
ZnO thin films were fabricated using the spin coating method, ZnO nanowires by cathodically induced sol-gel deposition by the means of an anodic aluminum oxide (AAO) template, and ZnO nanorods with the hydrothermal technique. For thin film preparation, a clear, homogeneous and stable ZnO solution was prepared by the sol-gel method using zinc acetate (ZnAc) precursor which was then coated on a glass substrate with a spin coater. Vertically aligned ZnO nanowires which were approximately 65 nm in diameter and 10 μm in length were grown in an AAO template by applying a cathodic voltage in aqueous zinc nitrate solution at room temperature. For fabrication of the ZnO nanorods, the sol-gel ZnO solution was coated on glass substrate by spin coating as a seed layer. Then ZnO nanorods were grown in zinc nitrate and hexamthylenetetramine aqueous solution. The ZnO nanorods are approximately 30 nm in diameter and 500 nm in length. The ZnO thin film, ZnO nanowires and nanorods were characterized by X-ray diffraction (XRD) analysis and scanning electron microscope (SEM). The NO2 gas sensing properties of ZnO thin films, nanowires and nanorods were investigated in a dark chamber at 200 °C in the concentration range of 100 ppb-10 ppm. It was found that the response times of both ZnO thin films and ZnO nanorods were approximately 30 s, and the sensor response was depended on shape and size of ZnO nanostructures and electrode configurations.  相似文献   

5.
In this paper we report the synthesis of ZnO nanowires via chemical vapor deposition (CVD) at 650 °C. It will be shown that these nanowires are suitable for sensing applications. ZnO nanowires were grown with diameters ranging from 50 to 200 nm depending on the substrate position in a CVD synthesis reactor and the growth regimes. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and Raman spectroscopy (RS) have been used to characterize the ZnO nanowires. To investigate the suitability of the CVD synthesized ZnO nanowires for gas sensing applications, a single ZnO nanowire device (50 nm in diameter) was fabricated using a focused ion beam (FIB). The response to H2 of a gas nanosensor based on an individual ZnO nanowire is also reported.  相似文献   

6.
The purpose is to find the potential application of PZT thin film for microsensor and microactuator. Pb(Zr0.5Ti0.5)O3 thin film is deposited by sol-gel method. Piezoelectric microcantilever with two-segment top electrodes is fabricated using bulk micromachining techniques. Piezoelectricity of the deposited PZT thin film and sensing and actuation capability of the each segment of microcantilever is proved. Experiments are performed when one segment acts as an actuator or vibrator and another segment as force sensor. The results show that the proposed PZT thin film microcantilever can be used in force feedback and object manipulation simultaneously.  相似文献   

7.
The highly arrayed arsenic doped p-ZnO nanowires/n-ZnO thin film homojunction light-emitting diode was fabricated on semi-insulated Si substrate. The homojunction was consisted of high-quality n-ZnO thin film grown by metal–organic chemical vapor deposition technology following arsenic doped ZnO nanowires grown by chemical vapor deposition. The device shows good rectification characteristic with a turn-on voltage of ~4.8 V and reverse breakdown voltage of ~18 V. Moreover, two distinct electroluminescence bands centered at 2.35 and 3.18 eV are detected from this device under forward bias at room temperature.  相似文献   

8.
Pang C  Yan B  Liao L  Liu B  Zheng Z  Wu T  Sun H  Yu T 《Nanotechnology》2010,21(46):465706
Ternary oxides have the potential to display better electrical and optical properties than the commonly fabricated binary oxides. In our experiments, Zn(2)SnO(4) (ZTO) nanowires were synthesized via thermal evaporation and vapor phase transport. The opto-electrical performance of the nanowires was investigated. An individual ZTO nanowire field-effect transistor was successfully fabricated for the first time and shows an on-off ratio of 10(4) and transconductance of 20.6 nS, which demonstrates the promising electronic performance of ZTO nanowire in an electrical device. Field emission experiments on ZTO nanowire film also indicate their potential application as a field emission electron source.  相似文献   

9.
Human sweat comprises various electrolytes that are health status indicators. Conventional potentiometric electrolyte sensors require an electrical power source, which is expensive, bulky, and requires a complex architecture. Herein, this work demonstrates an electric nanogenerator fabricated using silicon nanowire (SiNW) arrays comprising modified carbon nanoparticles. The SiNW arrays platform is demonstrated as an effective self-powered sensor for sweat electrolyte analysis. It has been shown that an evaporation-induced water flow in nanochannels can yield an open-circuit voltage (Voc) of 0.45 V and a short-circuit current of 10.2 µA at room temperature as a result of overlapped electric double layers. The electrolyte in the water flow results in a Voc decrease due to the charge shielding effect. The Voc is inversely proportional to the electrolyte concentration. The fabricated hydrovoltaic device shows the capability for sensing electrolytes in human sweat, which is useful in evaluating the hydration status of volunteers following intense physical exercise. The device depicts a novel response mechanism compared to conventional electrochemical sensors. Furthermore, the hydrovoltaic device shows a maximum output power of 1.42 µW, and as such has been successfully shown to drive various electronic devices including light-emitting diodes, a calculator, and an electronic timer.  相似文献   

10.
A comparison between stress migration (SM) and electromigration (EM) in the fabrication of thin Al wires was made. The samples used in each case had the same structure and were manufactured by depositing a thin Al film on a SiO2 layer, a native oxide layer covering the Al film. Al microwires were formed by SM by wide-area atomic migration, meanwhile, nanowires were formed by EM through local accumulation of atoms. It was found that the mechanisms of wire formation were same in both SM and EM tests except the ability of accumulating atoms. Al micro/nanowires with controlled geometry can be fabricated by SM or EM.  相似文献   

11.
本文用导电原子力显微镜 (AFM)针尖诱导局域氧化反应的方法 ,在Ti膜表面制备了TiO2 纳米结构。实验结果表明 ,Ti膜的氧化阈值为 - 7伏 ,制备的TiO2 纳米线的最小线宽达到 10nm ,TiO2 纳米线的高度和宽度随针尖偏压的增大而增大。在优化的氧化刻蚀条件下 ,通过控制针尖偏压和扫描方式制备出了图形化的TiO2 结构 ,本研究表明基于导电AFM的纳米刻蚀技术将成为构筑纳米电子器件的重要工具  相似文献   

12.
A novel route for the fabrication of the SM based 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) organic thin film by electrospray deposition (ESD) technique has been presented in this paper. The tailoring of the film thickness was also performed by varying the number of deposition passes at a constant substrate speed. The structural and optical characterizations of the fabricated BCP thin film were thoroughly investigated. The energy gap of the fabricated thin film was measured to be 3.5 eV. Furthermore, the electrical performance of the BCP thin film was verified by performing current–voltage measurement of the prototype organic diode device having fabricated BCP film as a buffer layer. The current density–voltage characteristic curve of the organic device showed non linear diode like behavior, thereby confirming the proper interference established between organic diode adjacent layers. At low voltage, the device showed ohmic conduction, where as the space charged limited current and trap charge limited current mechanism have been found to be dominant in the fabricated organic device at higher voltage. Overall, the results suggest that the ESD approach will be promising for organic semiconductor device fabrication at low cost and with low material loss.  相似文献   

13.
A solid‐state thermoelectric device is attractive for diverse technological areas such as cooling, power generation and waste heat recovery with unique advantages of quiet operation, zero hazardous emissions, and long lifetime. With the rapid growth of flexible electronics and miniature sensors, the low‐cost flexible thermoelectric energy harvester is highly desired as a potential power supply. Herein, a flexible thermoelectric copper selenide (Cu2Se) thin film, consisting of earth‐abundant elements, is reported. The thin film is fabricated by a low‐cost and scalable spin coating process using ink solution with a truly soluble precursor. The Cu2Se thin film exhibits a power factor of 0.62 mW/(m K2) at 684 K on rigid Al2O3 substrate and 0.46 mW/(m K2) at 664 K on flexible polyimide substrate, which is much higher than the values obtained from other solution processed Cu2Se thin films (<0.1 mW/(m K2)) and among the highest values reported in all flexible thermoelectric films to date (≈0.5 mW/(m K2)). Additionally, the fabricated thin film shows great promise to be integrated with the flexible electronic devices, with negligible performance change after 1000 bending cycles. Together, the study demonstrates a low‐cost and scalable pathway to high‐performance flexible thin film thermoelectric devices from relatively earth‐abundant elements.  相似文献   

14.
Microbridges of YBa2Cu3O7 thin films have been fabricated by conventional photolithography and wet chemical etching using EDTA, and by the lift-off lithography technique. The variation of etch rate with etch time, etchant temperature, and post-deposition sintering temperature has been studied. It has been shown that both techniques are useful for film patterning. However, an additional sintering step is necessary for the chemically etched sample to regain the original film properties. An order of increase in critical current density is observed for the patterned film.  相似文献   

15.
New techniques to directly grow metal oxide nanowire networks without the need for initial nanoparticle seed deposition or postsynthesis nanowire casting will bridge the gap between bottom‐up formation and top‐down processing for many electronic, photonic, energy storage, and conversion technologies. Whether etched top‐down, or grown from catalyst nanoparticles bottom‐up, nanowire growth relies on heterogeneous material seeds. Converting surface oxide films, ubiquitous in the microelectronics industry, to nanowires and nanowire networks by the incorporation of extra species through interdiffusion can provide an alternative deposition method. It is shown that solution‐processed thin films of oxides can be converted and recrystallized into nanowires and networks of nanowires by solid‐state interdiffusion of ionic species from a mechanically contacted donor substrate. NaVO3 nanowire networks on smooth Si/SiO2 and granular fluorine‐doped tin oxide surfaces can be formed by low‐temperature annealing of a Na diffusion species‐containing donor glass to a solution‐processed V2O5 thin film, where recrystallization drives nanowire growth according to the crystal habit of the new oxide phase. This technique illustrates a new method for the direct formation of complex metal oxide nanowires on technologically relevant substrates, from smooth semiconductors, to transparent conducting materials and interdigitated device structures.  相似文献   

16.
《Journal of Modern Optics》2013,60(4):433-440
A 16 × 18 bit CdS spatial modulator has been developed which utilizes the thermal shift of a band edge in thin CdS single crystals for modulation of laser light. This device is able to generate up to 500 different transmission patterns per second with an optical contrast ratio of 1: 100. It has been fabricated using conventional thin film and integrated silicon technology. A 32 × 36 matrix is at present under construction and the realization of even larger arrays seems to be possible.  相似文献   

17.
A stretchable, transparent, and body‐attachable chemical sensor is assembled from the stretchable nanocomposite network film for ultrasensitive chemical vapor sensing. The stretchable nanocomposite network film is fabricated by in situ preparation of polyaniline/MoS2 (PANI/MoS2) nanocomposite in MoS2 suspension and simultaneously nanocomposite deposition onto prestrain elastomeric polydimethylsiloxane substrate. The assembled stretchable electronic sensor demonstrates ultrasensitive sensing performance as low as 50 ppb, robust sensing stability, and reliable stretchability for high‐performance chemical vapor sensing. The ultrasensitive sensing performance of the stretchable electronic sensors could be ascribed to the synergistic sensing advantages of MoS2 and PANI, higher specific surface area, the reliable sensing channels of interconnected network, and the effectively exposed sensing materials. It is expected to hold great promise for assembling various flexible stretchable chemical vapor sensors with ultrasensitive sensing performance, superior sensing stability, reliable stretchability, and robust portability to be potentially integrated into wearable electronics for real‐time monitoring of environment safety and human healthcare.  相似文献   

18.
This paper reports the synthesis and characterization of nanocrystalline indium tin oxide (ITO) and its application as humidity and gas sensors. The structure and crystallite size of the synthesized powder were determined by X-ray diffraction. The minimum crystallite size was found 5 nm by Debye–Scherrer equation and confirmed by transmission electron microscopy image. Optical characterizations of ITO were studied using UV–visible absorption spectroscopy and Fourier transforms infrared spectroscopy. Thermal analysis was carried out by differential scanning calorimetry. Further, the ITO thin film was fabricated using sol–gel spin coating method. The surface morphology of the fabricated film was investigated using scanning electron microscopy images. For the study of humidity sensing, the thin film of ITO was exposed with humidity in a controlled humidity chamber. The variations in resistance of the film with relative humidity were observed. The average sensitivity of the humidity sensor was found 0.70 MΩ/%RH. In addition, we have also investigated the carbon dioxide (CO2) and liquefied petroleum gas sensing behaviour of the fabricated film. Maximum sensitivity of the film was ~17 towards CO2. Its response and recovery times were ~5 and 7 min respectively. Sensor based on CO2 is 97 % reproducible after 3 months of its fabrication. Better sensitivity, small response time and good reproducibility recognized that the fabricated sensor is challenging for the detection of carbon dioxide.  相似文献   

19.
A thin film polymeric junction was fabricated which yields a molecular electronic device functionally able to learn, i.e. to respond coherently to an external training signal. The fabricated structure is based upon electrochemical control of electronic current in a conducting polymer in contact with a solid electrolyte polymer. This functional behavior bears some resemblance to simple cases of biological learning processes. We report a comprehensive electronic characterization of the device function. Additional study was performed in order to estimate the possibility of the integration of such kinds of devices in statistical adaptive networks.  相似文献   

20.
Conducting polymers exhibit good mechanical and interfacial compatibility with plastic substrates. We prepared an optimized coating formulation based on poly(3,4-ethylenedioxythiophene) (PEDOT) and 3-(trimethoxysilyl)propyl acrylate and fabricated a transparent electrode on poly(ethylene terephthalate) (PET) substrate. The surface resistances and transmittance of the prepared thin films were 500-600 Ω/□ and 87% at 500 nm, respectively. To evaluate the performance of the conducting polymer electrode, we fabricated a five-layer flexible polymer-dispersed liquid crystal (PDLC) device as a PET-PEDOT-PDLC-PEDOT-PET flexible film. The prepared PDLC device exhibited a low driving voltage (15 VAC), high contrast ratio (60:1), and high transmittance in the ON state (60%), characteristics that are comparable with those of conventional PDLC film based on indium tin oxide electrodes. The fabrication of conducting polymer thin films as the driving electrodes in this study showed that such films can be used as a substitute for an indium tin oxide electrode, which further enhances the flexibility of PDLC film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号