首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Young’s modulus and Poisson’s ratio for thermal spray coatings are needed to evaluate properties and characteristics of thermal spray coatings such as residual stresses, fracture toughness, and fatigue crack growth rates. It is difficult to evaluate Young’s modulus and Poisson’s ratio of thermal spray coatings be-cause coatings are usually thin and attached to a thicker and much stiffer substrate. Under loading, the substrate restricts the coating from deforming. Since coatings are used while bonded to a substrate, it is desirable to have a procedure to evaluate Young’s modulus and Poisson’s ratio in situ. The cantilever beam method to evaluate the Young’s modulus and Poisson’s ratio of thermal spray coat-ings is presented. The method uses strain gages located on the coating and substrate surfaces. A series of increasing loads is applied to the end of the cantilever beam. The moment at the gaged section is calcu-lated. Using a laminated plate bending theory, the Young’s modulus and Poisson’s ratio are inferred based on a least squares fit of the equilibrium equations. The method is verified by comparing predicted values of Young’s modulus and Poisson’s ratio with reference values from a three-dimensional finite ele-ment analysis of the thermal spray coated cantilever beam. The sensitivity of the method is examined with respect to the accuracy of measured quantities such as strain gage readings, specimen dimensions, ap-plied bending moment, and substrate mechanical properties. The method is applied to evaluate the Young’s modulus and Poisson’s ratio of four thermal spray coatings of industrial importance.  相似文献   

2.
Corrosion Protection of Light Alloys Using Low Pressure Cold Spray   总被引:1,自引:0,他引:1  
Corrosion attack of aluminum- and magnesium-based alloys is a major issue worldwide. This study provides a report on the electrochemical behavior of several types of protective metal coatings obtained by low pressure cold spray (LPCS) and describes the performance of the latter’s corrosion resistance properties. In this manner several metal feedstock compositions were cold sprayed on AA2024-T3 Alclad substrate. Electrochemical methods, such as open circuit potential and potentiodynamic polarization, were used in combination with materials characterization techniques to assess the performance of LPCS protective coating layers. All sprayed samples were tested in the accelerated corrosion salt spray chamber for a time period of up to 500 h to obtain corrosion kinetics data, and with specific attention being focused on the characterization of the coating’s microstructural and mechanical properties. The overall conclusion of this study is that the LPCS process could be utilized to deposit corrosion protection coatings of light alloys as well as to repair aluminum and aluminum cladding structures during overhaul maintenance schedule in industry.  相似文献   

3.
Thermal spray has enjoyed unprecedented growth and has emerged as an innovative and multifaceted deposition technology. Thermal spray coatings are crucial to the enhanced utilization of various engineering systems. Industries, in recognition of thermal spray’s versatility and economics, have introduced it into manufacturing environments. The majority of modern thermal spray applications are “passive” protective coatings, and they rarely perform an electronic function. The ability to consolidate dissimilar material multilayers without substrate thermal loading has long been considered a virtue for thick-film electronics. However, the complexity of understanding/controlling materials functions especially those resulting from rapid solidification and layered assemblage has stymied expansion into electronics. That situation is changing: enhancements in process/material science are allowing reconsideration for novel electronic/sensor devices. This review critically examines past efforts in terms of materials functionality from a device perspective, along with ongoing/future concepts addressing the aforementioned deficiencies. The analysis points to intriguing future possibilities for thermal spray technology in the world of thick-film sensors.  相似文献   

4.
The conformity of products is usually assessed on the basis of Gaussian distributions of the test results. For wire screen products, as an example, this assumption is only valid if the apertures are quite close to the nominal value and if the dispersion of the apertures is small compared to the tolerance band. In cases where these provisions are not given beta distributions are better distribution approaches. The application of a modified beta distribution leads to significantly lower producer’s and consumer’s risks allowing to expand safeguard limits without changing the levels of confidence. A financial model enables the user to create scenarios for such different input data as the effort for testing, the number of products in line with the production target, the prices of products and scrap prices as well as quality classifications of products. The pivots chosen for the model are the producer’s and consumer’s risks. For reasons of comparison the risks were determined both on the basis of normal and modified beta distributions. Product-specific conformity assessment procedures may have apparent financial benefits if the parameters of the model can be well defined.  相似文献   

5.
Finely structured ceramic coatings can be obtained by solution precursor plasma spraying. The final structure of the coating highly depends on the droplet size and velocity distribution at the injection, the evolution of the spray in the jet, and droplet breakup and collision within the spray. This article describes a 3D model to simulate the transport phenomena and the trajectory and heating of the solution spray in the process. O’Rourke’s droplet collision model is used to take into account the influence of droplet collision. The influence of droplet breakup is also considered by implementing TAB droplet breakup models into the plasma jet model. The effects of droplet collisions and breakup on the droplet size, velocity, and temperature distribution of the solution spray are investigated. The results indicate that droplet breakup and collision play an important role in determining the final particle size and velocity distributions on the substrate. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

6.
The present study uses plasma spray technology as a production process for the fabrication of free- stand-ing, near- net- shaped NiAl components. Attention is especially focused on the in situ synthesis of NiAl. A new internal, dual powder injector blade has been designed to improve the gun performance as well as the spray efficiency of the feedstock powder. The specific role of the substrate (i.e., its shape and material) for the successful spray forming of free- standing parts is studied. The as- sprayed parts were subjected to a post- heat- treatment and hot isostatic pressing. Subsequently, they were metallographically inspected. The mechanical properties, such as hardness, Young’s moduli, and the fracture behavior during four-point bending, are also examined.  相似文献   

7.
In the plasma spray coating process, the coating’s profile and overall thickness are dependent on the number of overlapping traverses of the torch, the shape of the particle spray plume, the spatial distribution of the in-flight parameters of the particles within, and the orientation of the substrate. In this paper, a semi-empirical methodology for predicting three-dimensional deposits by the plasma spray process is developed. It comprises of three stages: first, spatial distributions of the in-flight parameters of multi-sized particles within the spray plume are determined by Computational Fluid Dynamics simulations. The size and shape parameters of the splats formed when individual droplets impact and spread out are obtained by experiments. Finally, a computer program is developed to integrate the particle parameters distribution and the empirical splat geometric data to generate a three-dimensional profile representing the deposit. The procedures predict the deposition volumes and thicknesses for different substrate inclinations with good agreement to experimentally sprayed deposits.  相似文献   

8.
The fatigue behavior and Young’s modulus of plasma-sprayed gray alumina on low-carbon steel substrates were investigated. The investigation of the properties of composites that were defined as “coating-substrate” composites included measurements of the microhardness profile, the residual stress on the top of the coating, and the residual stress profile in the substrate. Fatigue samples were periodically loaded as a cantilever beam on a special testing machine. Failed samples were observed with a scanning electron microscope to determine the failure processes in the coating. The Young’s modulus of the coating was measured by the four-point bending method. Samples were tested both in tension and compression under low (300 N) and high (800 N) loads. The authors’ experiments revealed that the average fatigue lives of coated specimens were nearly two times longer than those of the uncoated specimens. The measurements of Young’s modulus of the coating yielded values that varied between 27 and 53 GPa, with an average value of 43 GPa. Loading in tension caused a decrease in the Young’s modulus of the coating, while loading in compression led to an increase in Young’s modulus. The increase in the lifetime of coated samples was likely due to compressive residual stresses in the substrate, originating during the spray process. The failure of the coating was due to several processes, among which the most important were splat cracking, splat debonding, and the coalescence of cracks through the voids in the coating.  相似文献   

9.
In thermal spraying, molten particles strike a solid surface, where they are flattened and quenched within a very short time. Considerable in-plane tensile stress on the order of 100 MPa can develop within each splat during quenching after solidification because thermal contraction of the particle is constrained by the underlying solid. Ni-20Cr alloy and alumina powders have been plasma sprayed in air onto steel substrates that were maintained at about 473 K. The influence of spraying conditions such as spray distance on the magnitude of the quenching stress have been studied by measuring the curvature of the substrate during spraying. Mechanical properties such as Young’s modulus and bend strength of the deposited coatings have also been measured. A strong correlation was found between the quenching stress and the strength of Ni-20Cr coatings, which suggests that the strength of interlamellar bonding limits the quenching stress at such temperature. Presented at ITSC ’92, June, 1992, Orlando, Florida.  相似文献   

10.
Nondestructive techniques for evaluating and characterizing coatings were extensively demanded by the thermal spray community; nonetheless, few results have been produced in practice due to difficulties in analyzing the complex structure of thermal spray coatings. Of particular interest is knowledge of the elastic modulus values and Poisson’s ratios, which are very important when seeking to understand and/or model the mechanical behavior or to develop life prediction models of thermal spray coatings used in various applications (e.g., wear, fatigue, and high temperatures). In the current study, two techniques, laser-ultrasonics and Knoop indentation, were used to determine the elastic modulus of thermal spray coatings. Laser-ultrasonics is a noncontact and nondestructive evaluation method that uses lasers to generate and detect ultrasound. Ultrasonic velocities in a material are directly related to its elastic modulus value. The Knoop indentation technique, which has been widely used as a method for determining elastic modulus values, was used to compare and validate the measurements of the laser-ultrasonic technique. The determination of elastic modulus values via the Knoop indentation technique is based on the measurement of elastic recovery of the dimensions of the Knoop indentation impression. The approach used in the current study was to focus on evaluating the elastic modulus of very uniform, dense, and near-isotropic titania and WC-Co thermal spray coatings using these two techniques. Four different coatings were evaluated: two titania coatings produced by air plasma spray (APS) and high-velocity oxyfuel (HVOF) and two types of WC-Co coatings, conventional and multimodal (nanostructured and microsized particles), deposited by HVOF. The original version of this article was published as part of the ASM Proceedings, Thermal Spray 2003: Advancing the Science and Applying the Technology, International Thermal Spray Conference (Orlando, FL), 5–8 May, 2003, Basil R. Marple and Christian Moreau, Eds., ASM International, 2003.  相似文献   

11.
An in-flight properties measurement performed on W particles, injected into thermal plasma generated by an inductively coupled RF plasma torch, is presented. The measured surface properties of the particles along the centerline of the plasma plume are expressed by means of temperature and velocity maps, within the domain formed by individual particle’s diameters and their distances from the torch exit. The influence of some of the processing parameters (plate power, carrier gas flow rate, spray chamber pressure) on particle properties is discussed for both individual particles and the resultant integral spray plume characteristics. The results so obtained appear to confirm the suitability of the RF plasma process for the deposition/production of W coatings/deposits.  相似文献   

12.
Characterization of copper layers produced by cold gas-dynamic spraying   总被引:6,自引:0,他引:6  
The cold gas-dynamic spray method produces coatings or deposits by introducing solid feedstock particles into a supersonic gas stream developed through the use of a converging-diverging (de Laval) nozzle. The particles thus accelerated impact on a substrate surface and develop into a dense deposit through a process believed to be similar to cold compaction. The work reported here explores the internal nature and physical characteristics of copper deposits produced by the cold gas-dynamic spray method using two vastly different starting powders: in one case, a “spongy” copper obtained by a direct-reduction process, and in the second, a denser, more spheroidal particulate produced by gas atomization. Optical and electron microscopies (scanning electron microscopy [SEM] and transmission electron microscopy [TEM]) were used to observe details of microstructure in the feedstock particles and deposits. Young’s modulus and residual stress measurements for the deposits were obtained through mechanical means, and measurements of hardness and electrical conductivity are reported. The internal structure of the cold-spray deposit was influenced by the surface purity of the feedstock material.  相似文献   

13.
The high velocity oxy-fuel (HVOF) spray process has been primarily used for the application of wear-resistant coatings and, with the introduction of new, more powerful systems, is being increasingly considered for producing corrosion-resistant coatings. In this study, the influence of various spray parameters for the JP-5000 and Diamond Jet (DJ) Hybrid systems on the oxidation of stainless steel 316L is characterized. Experimental results reveal that coating oxygen contents of less than 1 wt.% can be more easily attained with the JP-5000 than the DJ Hybrid systems because of the former’s design. In both cases, however, the low particle temperatures necessary for low oxygen content coatings may impair bond and cohesive strength. Heat treating the coatings after processing reduces hardness, metallurgically enhances bond strength, and enables the spheroidization of oxide layers surrounding unmelted particles. An empirical model describing oxidation in the thermal spray process was expanded to explain the oxidation in the HVOF spraying of stainless steel. It was concluded that for these oxygen-sensitive materials, maintaining a relatively low particle temperature throughout the spray process minimizes oxygen pickup by preventing an autocatalytic oxidation process and particle fragmentation upon impact. For the DJ Hybrid systems, understoichiometric fuel settings are selected, whereas for the JP-5000, oxygen-rich mixtures are preferred.  相似文献   

14.
Thermal spray and other high-temperature industrial processes are quite difficult to monitor with the human eye, because the luminous volume of the plasma or flame obscures the behavior of the solid or molten material in the heat-affected area. When a photographic or video camera is used, viewing is further degraded by the extreme contrast variation across the image area, making it impossible to achieve proper exposure throughout the image—except possibly for small areas of comparable brightness. Optical filtering with neutral density filters, such as those used in a welder’s helmet, are of no practical benefit. With thermal spray processes, the injection and flow of particles within the plasma flame is almost totally concealed by the extreme brightness of the plasma, flame, or arc. In addition, the particles quickly accelerate to very high speeds, making their detection even more difficult. This article discusses the development of integrated thermal spray process monitoring and analysis techniques based on two principles. The first is a unique vision sensing system that suppresses the flame, plasma, arc, or other high-luminosity phenomena in the video image. A further improvement is the use of dedicated image and analysis processing to enhance the sensor images and extract features of interest or dimensional measurements. These experimental techniques can be used as feedback for automated process monitoring and control.  相似文献   

15.
A detailed investigation of the relationship between the parameters of the spray process and the in-flight properties of the particles was carried out using a multivariate statistical approach. A full factorial designed experiment concerning the spray process was performed, the spray gun parameters’ current, argon flow rate, hydrogen flow rate, and powder feed rate being selected to control the process. The particle properties, viz. velocity, temperature, and diameter, were determined using an optical measurement system, DPV 2000. In addition, the standard deviations of, and the correlations between, the measured particle properties were analyzed. The results showed current to have the strongest impact on particle velocity and particle temperature and argon flow rate to be the only parameter with an inverse effect on velocity and temperature.  相似文献   

16.
Optimal design of a novel cold spray gun nozzle at a limited space   总被引:1,自引:0,他引:1  
Numerical analysis for the accelerating behavior of spray particles in cold spraying is conducted using a computational fluid dynamics program, FLUENT. The optimal design of the spray gun nozzle is achieved based on simulation results to solve the problem of coating for the limited inner wall of a small cylinder or pipe. It is found that the nozzle expansion ratio, particle size, accelerating gas type, operating pressure, and temperature are main factors influencing the accelerating behavior of spray particles in a limited space. The experimental results using the designed short nozzle with a whole gun length of <70 mm confirmed the feasibility of optimal design for a spray gun nozzle used in a limited space.  相似文献   

17.
Beta titanium alloys are increasingly the best choice for automotive and aerospace applications due to their high performance-to-density ratio. Among these alloys, the TIMETAL Ti-LCB is already used in the automotive industry because it presents excellent mechanical properties and a lower cost compared with other Ti alloys. The current study deals with the characterization of the nucleation and growth of the α phase in several thermomechanical processes, because the distribution and size of the α phase strongly influence the mechanical properties of the resulting microstructures. Several heat treatments were conducted after either cold rolling or annealing. The resulting microstructures were characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, or electron backscatter diffraction. It was observed that the morphology and the volume fraction of the α phase are strongly dependent on the holding temperature, on the heating or cooling rate, and on the β grain size. This paper was presented at the Beta Titanium Alloys of the 00’ Symposium sponsored by the Titanium Committee of TMS, held during the 2005 TMS Annual Meeting & Exhibition, February 13–16, 2005 in San Francisco, CA.  相似文献   

18.
The process of low-carbon steel’s corrosion in water on the addition of a water extract of horse chestnut fruit by gravimetric, electrochemical, and physical-chemical methods, namely, UV and IR spectroscopy and X-ray analysis, was investigated. It was shown that the extraction time and the additives’ concentration appreciably decreased the steel’s corrosion rate to a value of 6.4. The protection degree is estimated to be 84%. A possible mechanism of the inhibition’s action was proposed.  相似文献   

19.
Technological advances in arc spray have produced a system that competes favorably with other thermal spray processes. In the past, arc spray was thought of as a process for very large parts that need thick buildups. However, an attachment device known as the arc jet system has been developed that focuses the pattern and accelerates the particles. This attachment device, coupled with the in-troduction of metal-cored wires that provide the same chemistries as plasma-sprayed powders, pro-vides application engineers with a viable economic alternative to existing spray methods. A comparative evaluation of a standard production plasma spray system was conducted with the arc spray process using the attachment device. This evaluation was conducted by an airline company on four major parts coated with nickel-aluminum. Results show that, for these applications, the arc spray process offers several benefits.  相似文献   

20.
HVOF-Deposited WCCoCr as Replacement for Hard Cr in Landing Gear Actuators   总被引:1,自引:0,他引:1  
WCCoCr coatings deposited by HVOF can replace hard Cr on landing gear components. Powders with two different WC particle sizes (micro and nano-) and geometries have been employed to study the effects on the coating’s properties. Moreover, coatings produced employing two sets of parameters resulting in high and low flame temperatures have been evaluated. Minor differences in microstructure and morphology were observed for the two powders employing the same spraying parameters, but the nano-sized powder exhibited a higher spraying efficiency. However, more significant microstructural changes result when the low- and high-energy spray parameters are used. Moreover, results of various tests which include adhesion, wear, salt fog corrosion resistance, liquid immersion, and axial fatigue strength, indicate that the coatings produced with high-energy flame are similar in behavior. On the other hand, the nanostructured low-energy flame coating exhibited a significantly lower salt fog corrosion resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号