首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N M Lawson  R P Mason 《Water research》2001,35(17):4039-4052
Weekly wet deposition and throughfall rain samples were collected in the Blacklick Run (BLK) and Herrington Creek Tributary (HCRT), two streams in western Maryland (MD). Samples were analyzed for total mercury (Hg), methylmercury (MMHg). arsenic (As), selenium (Se), cadmium (Cd), and Icad (Pb). Hg concentrations generally fell between 50 and 100 pM. comparable to concentrations in wet deposition measured at other MD sites. While Hg concentrations decreased with rainfall amount, a similar washout trend was not seen for MMHg. Cd, Pb, As, and Se concentrations were comparable overall to those measured in the region. Concentrations of Hg, Cd, and Pb in throughfall were similar between sites and equivalent or higher than wet deposition concentrations. As and Se concentrations were similar in throughfall at the two sites, though throughfall at BLK seemed to be punctuated with slightly higher concentrations of these two metals. Concentrations of Hg, MMHg, Cd, Pb, As, Se, and SPM were measured in monthly stream collections and compared with concentrations found in other MD rivers. In addition to the monthly collections, four storm events were sampled. These measurements demonstrate the importance of storm events in trace metal transport, especially for Hg, Pb and MMHg. For these metals, a strong correlation between metal and suspended particulate concentration was evident. Retention efficiencies of the watersheds for the metals were calculated for each watershed. Of all the metals, Hg is the most and As is the least strongly retained in the watershed.  相似文献   

2.
Concentrations of eight trace elements (As, Cd, Cu, Hg, Ni, Pb, Se and Zn), lindane and six groups of organic contaminants (total-chlordane, total-PCB, total-DDT, Dieldrin and Aldrin, total-butyltins, total-PAHs) at the 11 NOAA mussel watch project (MWP) sites located in North and South Carolina have been compared with the national US MWP data. Three sites from North and South Carolina had concentrations of PAHs in the upper 15th percentile on a national scale. One site had high concentrations of butyltins, and two sites had high Se concentrations. All sites from Beaufort, North Carolina, south had high As concentrations. Decreasing temporal trends were found for As, Cd, total-chlordane, DDT, PCB, and PAHs at some sites.  相似文献   

3.
Salix species and Sambucus nigra L. (elder) naturally invade dredged sediment landfills and are commonly encountered on substrates contaminated with heavy metals. Foliar concentrations of Cd and Zn in four Salix species and elder were explored in the field. Metal contents in dredged sediment derived soils were elevated compared to baseline concentration levels reported for Flanders. To evaluate foliar concentrations, reference data were compiled from observations in nurseries, young plantations and unpolluted sites with volunteer willow vegetation. Willows grown on polluted dredged sediment landfills showed elevated foliar Cd and Zn concentrations (>6.6 mg Cd/kg DW and >700 mg Zn/kg DW). This was not the case for elder. For willow, a significant relation was found between soil total Zn or Cd and foliar Zn or Cd, regardless of age, species, or clone. Willows proved to be useful bioindicators. Results indicated a possible threat in long-term habitat development of willow brushwood from transfer of Cd and Zn to the food web.  相似文献   

4.
Metal concentration of plants growing on contaminated soils among other factors may depend on changes in the hydrological regime of the soil. Foliar and stem metal concentrations in Salix cinerea (grey sallow) were measured in 2 consecutive growing seasons on a submerged sediment-derived soil that underwent gradual terrestrialisation. Foliar and stem cutting concentrations for Cd, Zn and Mn increased on plots that were submerged during the first year, but emerged in the second year of monitoring. The litter layer was sampled under the shrubs of a plot with a recent abrupt change in hydrological regime and on the reference plot. It was separated in three size fractions through sieving. Analysis of the litter fractions suggested that Cd and Zn concentrations remained constant during fragmentation. However, Cr, Cu, Ni and Pb concentrations increased, which was attributed to adhesion of mineral soil particles on the fine fraction. After correction for the metal content in the mineral fraction, an increase in Cd, Mn and Cu concentration during fragmentation of the organic part of the litter layer was observed for the polluted plot. Net litter layer decomposition rate was low, which may indicate low colonisation by the decomposing community. Terrestrialisation resulted in higher Cd, Mn and Zn uptake by willows. The deviant litter layer metal concentrations for Cd, Zn and Mn and low decomposition rate must be further monitored. Feasibility of measures aiming at re-establishing wetland conditions for the dredged sediment landfill must be considered.  相似文献   

5.
A long-term monitoring plan was established to study if bird populations around Do?ana National Park were affected by the toxic spill from the Aznalcóllar mine. The concentrations of Zn, Pb, As, Cu, Sb, Co, Tl and Cd in the blood of 11 bird species feeding in the area were determined. The parameters which most affect the accumulation of trace elements in the birds studied are, firstly, species and secondly, trophic position, sex, days of exposure and weight. In some individuals, Zn and Cu occurred at higher levels than the reference values for contaminated areas. Concentrations of Pb and Cd in a considerable number of individuals were higher than those found in birds from uncontaminated areas. The present data, together with the lack of data on blood metal concentration prior to the spill, do not offer any conclusive evidence of the influence of the spill on avian blood metal concentrations.  相似文献   

6.
Concentrations of selected trace elements in surface water and fluvial sediment were investigated as possible factors limiting the distribution and abundance of freshwater mussels in the Spring River Basin, a 6600 km(2) watershed overlapping a former Pb and Zn mining and ore processing district in the central USA. Mussel taxa richness surveys and supporting physical habitat assessments were performed in 23 stream reaches dispersed throughout the basin and above and below former mining sites. Quantitative mussel density surveys were performed in the Spring River at one upstream reference location and one downstream location. Concentrations of 16 trace elements in the soft tissues of mussels and Asian clams (Corbicula fluminea) were determined at most survey sites. Comparable analyses were performed on surface water samples collected during base flow and peak flow synoptic surveys and sediment samples collected during base flow periods. Sites on the Spring River immediately upstream of heavily mined areas supported at least 21-25 species of mussels, whereas sites near the lower terminus of the river yielded evidence of 6-8 extant species. Between the upper and lower quantitative survey sites, mean mussel and clam densities declined by 89% and 97%, respectively. Tributary reaches below heavily mined areas lacked evident bivalve communities and contained concentrations of Cd, Pb, and Zn that continually or sporadically exceeded hardness-dependent water quality criteria and consensus-based sediment quality guidelines (probable effect concentrations). In less contaminated stream reaches supporting bivalves, concentrations of Cd, Pb, and Zn in mussels and clams were correlated spatially with the levels occurring in surficial sediment (0.50 < or = tau < or = 0.64, p < or = 0.03). In non-headwater perennial stream reaches, sediment Cd, Pb, and Zn levels were related inversely to mussel taxa richness (-0.80 < or = tau < or = -0.64, p < or = 0.004). Metal contaminant burdens in mussels and clams fluctuated measurably in association with variable stream flow conditions and accompanying changes in surface water and sediment chemistry. Concentrations of Cd, Pb, and Zn in mussels approximately paralleled the levels measured in composite clam samples (0.74 < or = tau < or = 0.79, p<0.001), implying C. fluminea could serve as a possible surrogate for native mussels in future metal bioaccumulation studies. Overall, streams draining heavily mined areas exhibited depauperate (or fully extirpated) mussel assemblages and correspondingly elevated concentrations of Cd, Pb, and Zn in water, sediment, and bivalve tissue. Other evaluated environmental chemistry parameters, and physical habitat conditions assessed at the stream reach scale, demonstrated little general relationship to the degraded status of these assemblages. We conclude that pollution attributable to former mining operations continues to adversely influence environmental quality and impede the recovery of mussel communities in a large portion of the Spring River Basin.  相似文献   

7.
Significant areas in Flanders, Belgium exhibit moderate contamination with trace metals caused by disposal of contaminated dredged sediments. After disposal, the sediments develop into a soil-like material, on which vegetation is planted or develops spontaneously. Behaviour, cycling and ecosystem impacts of trace metals in calcareous dredged sediment disposal sites in Flanders is reviewed. Although soil physico-chemical properties favour a low metal bioavailability, pore water concentrations can be elevated compared to pore water in uncontaminated soils. While metal leaching is not considered to be of concern, several plants accumulate elevated levels of Cd and Zn in leaves. Also metal levels in soil dwelling organisms and small mammals, particularly Cd, are elevated compared to reference situations. This raises concern for an enhanced transfer of metals to the food chain. Future research should identify biological effects on organisms caused by the contamination. A comprehensive knowledge of metal behaviour in these sites is essential for developing appropriate management options for these sites.  相似文献   

8.
Fifteen tropical leafy vegetable types were sampled from farmers' gardens situated on nine contaminated sites used to grow vegetables for commercial or subsistence consumption in and around Kampala City, Uganda. Trace metal concentrations in soils were highly variable and originated from irrigation with wastewater, effluent discharge from industry and dumping of solid waste. Metal concentrations in the edible shoots of vegetables also differed greatly between, and within, sites. Gynandropsis gynandra consistently accumulated the highest Cd, Pb and Cu concentrations, while Amaranthus dubius accumulated the highest Zn concentration. Cadmium uptake from soils with contrasting sources and severity of contamination was consistently lowest in Cucurbita maxima and Vigna unguiculata, suggesting these species were most able to restrict Cd uptake from contaminated soil. Concentrations of Pb and Cr were consistently greater in unwashed, than in washed, vegetables, in marked contrast to Cd, Ni and Zn. The risk to human health, expressed as a ‘hazard quotient’ (HQM), was generally greatest for Cd, followed successively by Pb, Zn, Ni and Cu. Nevertheless, it was apparent that urban cultivation of leafy vegetables could be safely pursued on most sites, subject to site-specific assessment of soil metal burden, judicious choice of vegetable types and adoption of washing in clean water prior to cooking.  相似文献   

9.
Several authors suggest that a hydrological regime aiming at wetland creation is a potential management option that favours reducing bioavailability for metal-contaminated sites. The hydrological conditions on a site constitute one of the many factors that may affect the availability of potentially toxic trace metals for uptake by plants. Bioavailability of Cd, Mn and Zn on a contaminated dredged sediment landfill (DSL) with variable duration of submersion was evaluated by measuring metal concentrations in the wetland plant species Salix cinerea in field conditions. Longer submersion periods in the field caused lower Cd and Zn concentrations in the leaves in the first weeks of the growing season. Foliar Cd and Zn concentrations at the end of the growing season were highest on the initially flooded plot that emerged early in the growing season. Foliar Zn concentrations were also high at a sandy-textured oxic plot with low soil metal concentrations. Zn uptake in the leaves was markedly slower than Cd uptake for trees growing on soils with prolonged waterlogging during the growing season, pointing at a different availability. Zn availability was lowest when soil was submerged, but metal transfer from stems and twigs to leaves may mask the lower availability of Cd in submerged soils. Especially for Cd, a transfer effect from one growing season to the next season was observed: oxic conditions at the end of the previous growing season seem to determine at least partly the foliar concentrations for S. cinerea through this metal transfer mechanism. Duration of the submersion period is a key factor for bioavailability inasmuch as initially submerged soils emerging only in the second half of the growing season resulted in elevated Cd and Zn foliar concentrations at that time.  相似文献   

10.
This study was aimed at evaluating the lead (Pb) and cadmium (Cd) contamination status using resident pigeons from rural (island), central urban (Seoul), and four industrial complex areas in Korea with varying traffic density as well as atmospheric metal pollution records. We also discussed the results with respect to metal exposure trends in urban area after introduction of lead-free gasoline in Korea. Mean concentrations of Pb and Cd in bone and kidney of pigeons from Seoul were comparable to those from industrial complex areas and were about 15-20 times those at the reference site. This suggests that exposure to metals in the urban environment is as high as in the industrial areas. Lead and Cd concentrations in lungs of pigeons from Seoul were significantly higher by more than three times in 2000 than in 1991 (p < 0.01), whereas the residues in liver, kidney, and bone remained at a similar level, despite the introduction of unleaded gasoline in 1993. The Pb and Cd concentrations in tissues of pigeons did not decrease as atmospheric metal levels decreased. Ingestion may be more important than inhalation in exposing pigeons to Pb and Cd in this study.  相似文献   

11.
Trace element concentrations, as indicators of micronutrient status of healthy centenarians, have not been widely analyzed. This study aimed to assess trace element concentrations in the hair of healthy centenarians. The effects of gender and age on element concentrations were also investigated. Eleven trace elements (Al, Ba, Cd, Cr, Cu, Fe, Mo, Pb, Se, Sr and Zn) in the scalp hair of 107 healthy Chinese centenarians were examined. The overall reference values (RVs) in mg/kg for the hair concentrations of trace elements in centenarians were as follows: Al, 14.95; Ba, 2.68; Cd, 0.06; Cr, 0.59; Cu, 6.21); Fe, 19.37; Mo, 0.50; Pb, 4.64; Se, 0.37; Sr, 4.84; and Zn, 154.37. Data analysis found that only Cu and Zn concentrations show a normal distribution, and there is no significant difference between males and females in any element except Zn. However, the levels of Al, Cd, Cr, Fe, Mo, Pb decrease and the levels of Ba, Cu, Se, Sr, Zn increase with age in the centenarian cohort. Results also revealed that sufficient Zn and Se concentrations as well as low exposure to heavy metals pollution contribute to the longevity of centenarians. The results imply the possibility of manipulating trace element concentrations, especially Zn and Se concentrations in tissues, as a means for therapeutic modality in geriatric disease.  相似文献   

12.
Concentrations of three non-essential elements (cadmium (Cd), mercury (Hg), and lead (Pb)) were determined in sediment and fish from several locations in Alaska (AK) and California (CA) and used to examine differences in bioaccumulation within and between geographic locations. We analyzed tissue (liver, muscle, gill, and stomach contents) from white croaker (Genyonemus lineatus) and English sole (Pleuronectes vetulus) in California and flathead sole (Hippoglossoides elassodon) in Alaska, in addition to several species of invertebrates (mercury only). As found in previous work on arsenic (As) [Meador et al., 2004], Cd in fish liver exhibited a negative correlation with sediment concentrations. No such correlations were found for Hg and Pb when fish liver and sediment were compared; however, these metals did exhibit a positive relationship between liver and organic carbon normalized sediment concentrations, but only for the CA sites. Sediment concentrations of Hg at the AK sites were lower than those for the CA sites; however, AK invertebrates generally bioaccumulated more Hg than CA invertebrates. Conversely, Hg bioaccumulation was higher in CA fish. Even though ratios of total metal/acid volatile sulfides (AVS) in sediment were one to two orders of magnitude higher for the AK sites, bioaccumulation of these elements was much higher in fish from the CA sites. Bioaccumulation factors ([liver]/[sediment]) (BAFs) were highest at relatively clean sites (Bodega Bay and Monterey), indicating that elements were more bioavailable at these sites than from more contaminated locations. The observation of high BAFs for As in fish from Alaska and low BAFs for the California fish, but reversed for Cd, Hg, and Pb in this study, implies that differences in fish species are less important than the unique geochemical features at each site that control bioavailability and bioaccumulation and the potential sources for each element. Additionally, these data were also used to examine the metal depletion hypothesis, which describes the inverse relationship between elements and organic contaminants documented in some monitoring studies. Our results suggest that the enhanced bioavailability of the metals at some uncontaminated sites is the main determinant for the inverse correlation between metal and organic contaminants in tissue.  相似文献   

13.
The uptake of trace metals in the leaves of fast-growing woody species is a crucial factor in ecological risk assessment and in the evaluation of phytoextraction potentials. In this study, we present a long-term data series of foliar Cd, Zn, Mn and Cu concentrations in poplar (Populus trichocarpa x P. deltoides). Leaves were collected every three weeks from 2001 until 2007 on three sites, (i) a new plantation on an alluvial soil polluted by river sediments, (ii) a new plantation on an unpolluted soil and (iii) a 10-year old plantation on a polluted dredged sediment soil. In addition, tree rings were measured on the alluvial soil in order to better assess growth over the past seven years. Foliar concentrations of Cd, Zn and Mn decreased considerably with time in the new plantation on polluted soil. Concentrations of Zn and Mn decreased in the new plantation on unpolluted soil as well. The older plantation on polluted soil did not show changes in foliar concentrations for Cd, Zn or Mn. Foliar Cu concentrations slightly increased for all sites. Within one growing season, foliar concentrations of Cd, Zn, Cu and Mn increased towards the end of the season. The tree ring data of the poplars on the alluvial soil indicated a strong decrease in growth due to declining tree condition from 2005 onwards, the same year that foliar Cd and Zn concentrations markedly decreased. Lower transpiration rates probably induced a lower uptake of dissolved trace metals. It is concluded that stand health and growth rate have a strong impact on the variation of foliar trace metal concentrations over time.  相似文献   

14.
The effects of willow stand development on top soil properties of uncontaminated infrastructure spoil landfills (ISL) and contaminated dredged sediment landfills (DSL) were assessed. For the ISL, significant increases in Cd, Zn and organic C levels in the top soil (0-10 cm) were detected more than 20 years after disposal. The increases in Cd and Zn concentrations in the top soil were attributed to leaf-associated metal transfer and leaf fall: the relatively high Cd and Zn concentrations in willow leaves resulted in top soil enrichment for these elements. Higher absolute amounts of Cd, Zn and Mn were taken up and recycled during leaf fall on DSL than on ISL, but did not result in significant differences between top soil and deeper soil (10-30 cm) for the DSL. Direct comparison of top soil development between both types of sites is not possible due to differences in stand age and time since disposal. The DSL were characterised by a higher short-range variance for the Cd, Cr, Cu, Pb and Zn concentrations in the top soil than the ISL. During the first years of ripening and dewatering, significant sulphate leaching occurred in the top soil of the DSL.  相似文献   

15.
The Netherlands Stimulation program on System-oriented Ecotoxicological Research focused on three study areas, including two floodplains and a peaty grassland. All three areas were polluted with metals, with total soil concentrations often exceeding Dutch Intervention Values. The floodplain areas showed a homogeneous distribution of metal pollution, while pollution in the peaty area was more heterogeneous. This study aimed at establishing possible general trends in metal bioavailability by combining results obtained at the three different study sites. Available metal concentrations, measured as pore water or 0.01 M CaCl2 extractable concentrations in soil, were lowest in the floodplain soils, probably due to the high pH (> 7.0) and high organic matter (8-30%) and clay contents (13-42%). In the peaty soil, having a lower soil pH (4.5-6.5) but higher organic matter contents (38-60%), in some but not all samples Cu concentrations in pore water and Cu and Pb concentrations in 0.01 CaCl2 extracts were higher than in non-polluted reference areas. Plants in the floodplain areas had only low metal concentrations in their leaves, but soil invertebrates and small mammals did contain elevated concentrations in their body. Cd showed high levels in earthworms, snails and small mammals, while also Cu levels were sometimes increased in earthworms, millipedes and small mammals from the floodplain areas. Earthworms from the peaty area contained increased levels of Cu and Pb. These results suggest that metal bioavailability cannot be predicted from available concentrations in pore water or 0.01 M CaCl2 soil extracts, but requires measurement of biota and more insight into the biodynamics of metal uptake.  相似文献   

16.
Removal of Pb, Cd, Cr, Mo, V, Be and Ba from municipal wastewater using a horizontal subsurface flow constructed wetland was studied. The removal efficiencies attained for these elements were 50, 86, 71, 59, ?53, 37 and 40%, respectively. The average inflow and outflow Pb concentrations were 1.5 and 0.7 µg/L. Similarly, the inflow and outflow concentrations of 0.14 and 0.02 µg/L were obtained for Cd. Cr inflow and outflow concentrations were 3.7 and 1.1 µg/L, respectively. Concentrations of 0.78 and 0.32 µg/L were measured for Mo. V was washed out from the system. Its average inflow and outflow concentrations were 4.8 and 7.4 µg/L, respectively. Be inflow and outflow concentrations were rather low (1.03 and 0.65 µg/L), however, the concentrations of Ba were significantly higher (189 and 113 µg/L). The main perspective of the constructed wetland is the removal of toxic elements forming insoluble compounds (e.g. CdS) depositing in the wetland bed.  相似文献   

17.
Baseline concentration levels of As, B, Ca, Cd, Cr, Cu, Co, Fe, Mg, Mn, Mo, Ni, P, Pb, Se, V, and Zn were determined for Porphyra columbina and Ulva sp. collected from three locations along San Jorge Gulf, in Patagonia Argentina. Elements were quantified by inductively coupled plasma-optical emission spectrometry, with the exception of lead and cadmium in some samples which were determined by electrothermal atomic absorption spectrometry. Three stations with different exposure degree to human activities, Bahía Solano, the mouth of Arroyo La Mata stream and Punta Maqueda, were selected as sampling points. The results showed a wide range of metal retention capacity between the two studied species. Regarding the levels of pollutants found in the researched sites, Punta Maqueda seemed to be less influenced by anthropogenic activities than the other two sites except for Cd. Taking into account their toxicities seasonal variations in Pb and Cd levels were studied in both algae in Punta Maqueda. Maximum concentrations of Cd (9.8 microg g(-1) dry wt.) were observed in P. columbina during winter, and maximum levels of Pb (0.82 microg g(-1) dry wt.) were detected in Ulva sp. during summer. Legislative and health safety aspects were evaluated for Cd and Pb.  相似文献   

18.
Native and transplanted mosses of the species Fontinalis antipyretica were studied to assess their capacity as biomonitors of heavy metals. Assays were carried out with transplanted mosses (sampled from an unpolluted control stream) exposed for 60 days to five streams polluted with heavy metals. At the same time, native mosses were collected from the exposure sites. Concentrations of N, P, K, Ca, Mg, S, Fe, Al, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, V, and Zn were determined in the mosses (native and transplants), stream waters, and sediments of both exposure and control sites. The results showed that the transplanted mosses accumulated significantly more Al, Cr, Cu, Pb, V, and Zn than the native mosses. The concentrations of Co and Mn in all streams were significantly higher in the native mosses.  相似文献   

19.
Bi X  Feng X  Yang Y  Li X  Sin GP  Qiu G  Qian X  Li F  He T  Li P  Liu T  Fu Z 《The Science of the total environment》2007,387(1-3):257-268
Historical zinc smelting in Hezhang, southwestern China, has resulted in significant heavy metal contamination of the surrounding ecosystems. The Caohai wetland system, which is an important national nature reserve close to the Hezhang zinc smelting area, was investigated in the present study. Results showed that sediments from the Caohai wetland system have been seriously contaminated by Cd, Pb and Zn with the highest concentrations in the surface sediments being up to 71, 160 and 1,200 microg g(-1), respectively. The heavy metals in the sediments were strongly associated with the organic/sulphide and residual fractions. A more oxidized condition induced by aquatic plants tended to cause the Cd, Pb and Zn bound to the Fe-Mn oxide fraction to become more dominant. Pb isotopic compositions in the sediments indicated that the inventories of Pb in the Caohai wetland sediments were mainly derived from the historical zinc smelting in the Hezhang area, although other anthropogenic sources, such as the gasoline Pb, also made a substantial contribution to the Pb in the sediments. Heavy metal contamination in aquatic plants was also studied and the results indicated that heavy metals accumulated by plants may pose a potential threat to the higher trophic-level organisms, including humans.  相似文献   

20.
The current study represents the first investigation of the suitability of marsupial and eutherian mammalian hair as indicator tissue for metal exposure and accumulation within contaminated Australian terrestrial ecosystems. A soil metal contamination gradient was established across 22 sites at increasing distances from a decommissioned Lead/Zinc smelter in NSW, Australia. Within each site, soil and small mammal populations were sampled. An Australian native marsupial, the insectivorous Brown Antechinus, Antechinus stuartii: Dasyuridae, and introduced rodents, the omnivorous Brown or Norway Rat, Rattus norvegicus: Muridae and the Black Rat, Rattus rattus: Muridae were assessed for hair concentrations of Cadmium (Cd), Copper (Cu), Lead (Pb) and Zinc (Zn). Metals in soil were most elevated at sites within close proximity to the smelter, with soil metal concentrations decreasing with distance from the smelter. The non-essential metals Pb and Cd were accumulated in hair, both metals exhibiting positive linear relationships with environmental exposure (soil metal concentrations). When the variables of weight and snout-vent length were considered, no further contribution in terms of explaining the variability in hair Cd or Pb was observed for all species examined. The essential metals Cu and Zn were regulated in hair, remaining similar across the metal contamination gradient. A significant negative correlation between snout-vent length and hair Cu concentration was found for the Brown Rat; greater hair Cu concentrations were found in smaller individuals of this species. Accumulation of Pb to hair was similar among species while concentrations of Cd in Brown Rat hair were higher than both Black Rat and Brown Antechinus hair. As each of the three aforementioned species exhibit similar bioaccumulation relationships for Pb, we suggest that sampling hair from introduced rodents (pest species) may provide a suitable proxy for the assessment of Pb bioavailability for a range of small mammals within Australian urban remnants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号