首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Considering the virtual network infrastructure as a service, optical network virtualization can facilitate the physical infrastructure sharing among different clients and applications that require optical network resources. Obviously, mapping multiple virtual network infrastructures onto the same physical network infrastructure is one of the greatest challenges related to optical network virtualization in flexible bandwidth optical networks. In order to efficiently address the virtual optical network (VON) provisioning problem, we can first obtain the virtual links’ order and the virtual nodes’ order based on their characteristics, such as the bandwidth requirement on virtual links and computing resources on virtual nodes. We then preconfigure the primary and backup paths for all node-pairs in the physical optical network, and the auxiliary graph is constructed by preconfiguring primary and backup paths. Two VON mapping approaches that include the power-aware virtual-links mapping (PVLM) approach and the power-aware virtual-nodes mapping (PVNM) approach are developed to reduce power consumption for a given set of VONs in flexible bandwidth optical networks with the distributed data centers. Simulation results show that our proposed PVLM approach can greatly reduce power consumption and save spectrum resources compared to the PVNM approach for the single-line rate and the mixed-line rate in flexible bandwidth optical networks with the distributed data centers.  相似文献   

2.
Spare bandwidth is required for recovering the network service from network faults. However, it degrades the efficiency of network utilization. Spare bandwidth demand can be reduced significantly by letting spare bandwidth be shared among several network services. Spare bandwidth reserved on a network element can be shared by a set of network services for a network fault if they are not simultaneously affected by the network fault. A new, and more practical spare bandwidth sharing scheme, which is based on the network reliability, is proposed in this paper. In the proposed scheme, multiple link failures are allowed with a given link failure rate, and a reasonable restoration level of near 100%; while in the conventional scheme, only a single link failure, and 100% restoration level are considered. To develop the spare bandwidth sharing scheme, we first investigate the framework for evaluating the reliability of path-based network services, and then we explain the proposed spare bandwidth sharing scheme with decision parameters such as lifetime of the path, restoration level, and the maximum number of working paths which can be protected by a backup link. Simulation results show that the proposed spare bandwidth sharing scheme requires a smaller amount of spare bandwidth than the conventional scheme.  相似文献   

3.
Broadband transport techniques and network architectures based on the virtual path concept are examined. ATM (asynchronous transfer mode) techniques, when coupled with recent technological innovations, are expected to pave the way for future universal transport networks. The virtual path concept, which exploits the ATM's capabilities, is proposed to construct an efficient and economic network. The concept matches current and anticipated technological trends well. Characteristics and implementation techniques of virtual paths are discussed. Advantages of the virtual path concept and its impact on the transport network architecture are demonstrated. The virtual path strategy is also shown to provide efficiently for networks with dynamic reconfiguration capability which will enhance network performance. Some basic analytical results on the dynamic control effects of virtual paths are provided  相似文献   

4.
The survivability for ATM based B‐ISDN has become an important challenge for telecommunication network planners and engineers. In this paper, we consider multiple grades of reliability concept and a multilayer survivable network architecture for survivable ATM networks. We address two complementary ATM VP restoration schemes in this paper. First, we propose preplanned rerouting models and algorithms based on combinatorial optimization to prepare efficient backup VP configuration. We test two formulations and algorithms for this problem. Efficient column generation technique to solve linear programming relaxation and strong valid inequalities incorporating the branch‐and‐bound scheme are suitable to solve the problem to optimality within small time limits. Second, we propose a new dynamic VP path restoration scheme to restore nonprotected VPs by the preplanned rerouting. Our protocol has shown the advantage in restoration effectiveness comparing a well‐known protocol in computational simulation. We, finally, address the relationships between the suggested models of this paper and the expected results of our ongoing project. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
As service providers move more applications to their IP/MPLS (multiple protocol label switching ) backbone networks, rapid restoration upon failure becomes more and more crucial. Recently MPLS fast reroute has attracted lots of attention as it was designed to meet the needs of real-time applications, such as voice over IP. MPLS fast reroute achieves rapid restoration by computing and signaling backup label switched path (LSP) tunnels in advance and re-directing traffic as close to failure point as possible. To provide a guarantee of bandwidth protection, extra bandwidth has to be reserved on backup paths. Using path merging technique as described in IETF RFC 4090 only, the network is able to share some bandwidth on common links among backup paths of the same service LSP, i.e., so-called intra-sharing. But no solution is provided on how to share bandwidth among backup paths of different service LSPs, i.e., so-called inter-sharing. In this paper, we provide an efficient distributed bandwidth management solution. This solution allows bandwidth sharing among backup paths of the same and different service LSPs, i.e., both intra-sharing and inter-sharing, with a guarantee of bandwidth protection for any single node/link failure. We also propose an efficient algorithm for backup path selection with the associated signaling extensions for additional information distribution and collection. To evaluate our schemes, we compare them via simulation with the basic MPLS fast reroute proposal, IETF RFC 4090, on two networks. Our simulation results show that using our bandwidth management scheme can significantly reduce restoration overbuild from about 250% to about 100%, and our optimized backup path selection can further reduce restoration overbuild to about 60%.  相似文献   

6.
Hybrid survivability approaches for optical WDM mesh networks   总被引:1,自引:0,他引:1  
This paper studies the problem of providing recovery from link failures in optical wavelength division multiplexing (WDM) networks. One of the widely studied mechanisms is dynamic link restoration, which provides recovery by determining restoration paths around a link after a failure occurs. This mechanism leads to a lower backup resource utilization, fast failure signaling rate, and a scalable operation. However, one of the main drawbacks of uncoordinated dynamic restoration is the inability to provide a 100% recovery for all connections, especially at high network loads. An alternate solution is proactive protection, where backup capacity is reserved during connection setup that can guarantee recovery under certain conditions (e.g., single link failures) but requires higher backup capacity and has low spare capacity utilization when failures do not occur. This paper presents two hybrid survivability approaches that combine the positive effects of restoration and protection. The proposed algorithms make use of available or collected network state information, such as link load, to identify critical links or segments in the network that are then proactively protected. The overall goal of the proposed approaches is to improve the restoration efficiency by providing a tradeoff between proactive protection and dynamic restoration. This paper presents a detailed performance analysis of the proposed algorithms. Experimental results show that under high loads, both the proposed approaches maintain a consistent restoration efficiency of at least 10%, or higher, when compared to the basic restoration scheme.  相似文献   

7.
Software‐defined networking that separates the control plane from the data plane is envisioned as a promising technology to enable resilient and flexible network management. Tolerating link failures is a fundamental problem in enhancing such network resilience in software‐defined networking. Reactive and proactive fault tolerant schemes for conventional networks may not well balance the fault recovery time and network performance, since the proactive scheme typically underutilizes resources and the reactive scheme usually incurs a longer recovery time. In this paper, we propose a cooperative link failure recovery scheme to find a fine‐grained trade‐off between resource utilization and recovery time by combining reactive and proactive methods. We formalize the problem of link failure recovery as a multiobjective optimization problem and devise a 2‐stage algorithm for it. The first stage of the algorithm guarantees connectivity restoration in an acceptable recovery interval based on fast failover feature supported in OpenFlow protocol, meanwhile it assigns virtual local area network tags to back up paths for achieving a lower memory consumption. The second stage of the algorithm guarantees the quality of service for different applications by adjusting the backup paths after rapid connectivity restoration. Extensive simulations highlight that cooperative link failure recovery scheme can satisfy both the carrier‐grade recovery requirements and quality of service requirements in terms of delay and network bandwidth.  相似文献   

8.
9.
In this paper we provide a centralized method for optimally selecting the set of active and backup paths in an optical transport network in the cases of shared-path restoration and 1:1 protection schemes. We provide novel mixed integer linear programming (MILP) formulations for both the schemes, for a network with full wavelength conversion capability. The given formulations are not restricted to consider single link failures: the concept of fault event is introduced to handle the possibility that multiple links go simultaneously under fault. The optimization objective includes the total capacity requirement plus an additional term related to the active paths reliability. We use a simple decomposition heuristic to support the resolution process. The optimization is solved for various sample scenarios in order to evaluate the resource saving achieved with the shared-path restoration scheme. The impact of different factors such as topology, traffic demand and structure of failures on the resource saving is analyzed. Also, we provide guidelines about handling differentiated levels of protection within the framework of the proposed formulations.  相似文献   

10.
Most research to date in survivable optical network design and operation, focused on the failure of a single component such as a link or a node. A double-link failure model in which any two links in the network may fail in an arbitrary order was proposed recently in literature [1]. Three loop-back methods of recovering from double-link failures were also presented. The basic idea behind these methods is to pre-compute two backup paths for each link on the primary paths and reserve resources on these paths. Compared to protection methods for single-link failure model, the protection methods for double-link failure model require much more spare capacity. Reserving dedicated resources on every backup path at the time of establishing primary path itself would consume excessive resources. Moreover, it may not be possible to allocate dedicated resources on each of two backup paths around each link, due to the wavelength continuous constraint. In M. Sridharan et al., [2,3] we captured the various operational phases in survivable WDM networks as a single integer programming based (ILP) optimization problem. In this work, we extend our optimization framework to include double-link failures. We use the double-link failure recovery methods available in literature, employ backup multiplexing schemes to optimize capacity utilization, and provide 100% protection guarantee for double-link failure recovery. We develop rules to identify scenarios when capacity sharing among interacting demand sets is possible. Our results indicate that for the double-link failure recovery methods, the shared-link protection scheme provides 10–15% savings in capacity utilization over the dedicated link protection scheme which reserves dedicated capacity on two backup paths for each link. We provide a way of adapting the heuristic based double-link failure recovery methods into a mathematical framework, and use techniques to improve wavelength utilization for optimal capacity usage.  相似文献   

11.
Achieving fast and bandwidth-efficient shared-path protection   总被引:4,自引:0,他引:4  
Dynamic provisioning of restorable bandwidth guaranteed paths is a challenge in the design of broad-band transport networks, especially next-generation optical networks. A common approach is called (failure-independent) path protection, whereby for every mission-critical active path to be established, a link (or node) disjoint backup path (BP) is also established. To optimize network resource utilization, shared path protection should be adopted, which often allows a new BP to share the bandwidth allocated to some existing BPs. However, it usually leads the backup paths to use too many links, with zero cost in term of additional backup bandwidth, along its route. It will violate the restoration time guarantee. In this paper, we propose novel integer linear programming (ILP) formulations by introducing two parameters (/spl epsi/ and /spl mu/) in both the sharing with complete information (SCI) scheme and the distributed partial information management (DPIM) scheme. Our results show that the proposed ILP formulations can not only improve the network resource utilization effectively, but also keep the BPs as short as possible.  相似文献   

12.
A New Analytical Model of Shared Backup Path Provisioning in GMPLS Networks   总被引:2,自引:0,他引:2  
As GMPLS and its supporting set of protocols develop into aviable control plane for optical networks, an important function that they will need to support will be the protection and restoration function that has been a major feature of legacy optical networks. A network with a robust set of protection and restoration mechanisms will be able to support data traffic while allowing faster recovery from failures than can be obtained using layer 3 rerouting. Several models have been proposed for protection with GMPLS using shared backup paths. This previous work has not investigated the effect on recovery time critical to the service or the number of backup paths that are required to meet a desired level of performance. Using both restoration time and recovery blocking probability, we have developed a new analytic model for GMPLS-based recovery in M : N protection groups. Furthermore, we show that smaller backup paths can be reserved by capturing the effect of multiple failures in the case of M : N shared protection with revertive mode in an optical network with a GMPLS control plane.  相似文献   

13.
Path layer technologies will play a key role in the development of a powerful and failure resilient B-ISDN. So far, they have been based on electrical technologies. This paper highlights WDM/FDM techniques and demonstrates that optical paths can greatly enhance the path layer capability and, therefore, the network performance. It is also shown that effective network failure restoration can be achieved with optical paths. The applicability of the wavelength path (WP) technique to global area networks is revealed by comparing different optical path realization techniques. WPs are applied to the national backbone network example to evaluate the required number of wavelengths, and to identify optical cross-connect node requirements. It then proposes a new optical path concept: the virtual wavelength path (VWP). In the VWP scheme, wavelengths are assigned on a link-by-link basis. In other words, the wavelength assigned to a wavelength path has only local significance. Significant benefits of the VWP such as the simplified path accommodation design within a transmission facility network and the reduced number of wavelengths needed, are elucidated. An optical cross-connect node architecture that enables the VWPs is also proposed. The architecture allows the VWP concept to be realized with commercially available optical technologies. The optical path layer concept proposed exploits and consolidates the layered transport network architecture and optical technologies, and will open up new opportunities for creating a B-ISDN that is bandwidth abundant and has a high degree of integrity  相似文献   

14.
In this paper, the sharing schemes of multicast in survivable Wavelength-Division Multiplexed (WDM) networks are studied and the concept of Shared Risk Link Group (SRLG) is considered. While the network resources are shared by the backup paths, the sharing way is possible to make the backup paths selfish. This selfishness leads the redundant hops of the backup route and a large number of primary lightpaths to share one backup link. The sharing schemes, especially, the self-sharing and cross-sharing, are investigated to avoid the selfishness when computing the backup light-tree. In order to decrease the selfishness of the backup paths, it is important to make the sharing links fair to be used. There is a trade-off between the self-sharing and cross-sharing, which is adjusted through simulation to adapt the sharing degree of each sharing scheme and save the network resources.  相似文献   

15.
WDM疏导网络的共享子通路保护算法   总被引:4,自引:4,他引:0  
研究了WDM疏导网络中的生存性问题,提出一种支持多粒度业务的共享子通路保护算法(GSSP)。GSSP首先根据网络当前状态动态调整链路权值,在此基础上选择一条最短路作为工作通路;然后将该通路分为互不重叠的等长子通路,分别找出它们的保护通路,并且允许共享保护资源。GSSP可以保证业务连接的可靠性,又允许网络管理者根据不同的优化策略调整子通路长度,可以在恢复时间和资源利用率之间进行折中。最后对GSSP进行了仿真研究,给出了仿真结果。  相似文献   

16.
针对现有可生存虚拟网络链路保护方法无差别对待所有虚拟链路、备份资源消耗多且故障后网络恢复时延长的问题,该文提出一种核心链路感知的可生存虚拟网络链路保护(CLA-SVNLP)方法。首先,综合考虑虚拟链路动态和静态两方面因素构建虚拟链路核心度度量模型,依据虚拟网络生存性需求,对核心度较高的虚拟链路进行备份保护;其次,将p圈引入可生存虚拟网络链路保护,依据虚拟网络特点构建p圈,为核心虚拟链路提供1:N保护,即每条核心虚拟链路平均消耗1/N条的备份链路带宽资源以减少备份链路资源消耗,并将单物理链路保护问题转化为多个p圈内的单虚拟链路保护问题;最后网络编码技术与p圈结合,将备份链路对核心虚拟链路提供的1:N保护转化为1+N保护,避免了故障后定位、检测及数据重传。仿真结果表明,该方法提高了备份资源利用率且缩短了故障后的网络恢复时延。  相似文献   

17.
In dynamic IP-over-WDM networks efficient fault-management techniques become more difficult since as demands change with time the optimal logical topology varies as well. Changes in the virtual topology should be done with care because working IP LSPs routed on top of a virtual topology should not be interrupted. Reconfiguration of the virtual topology may also affect precomputed backup IP LSPs to be activated in case of failure meaning that backup IP LSPs would need to be recomputed after any change in the virtual topology. A good sense solution can be the dimensioning of the virtual topology for a worst case traffic scenario, having as goal the minimization of the network cost, for example, and then route dynamic IP LSPs on this virtual topology. The virtual topology would remain unchanged as long as possible, that is, until changes in the virtual topology are considered to bring considerable benefits. Since data services over IP are essentially of a best-effort nature, protection could be provided, using IP LSP protection, only when bandwidth is available in the virtual topology. The computation of backup IP LSPs does not interfere with working IP LSPs meaning that no service interruption will exist. Such a strategy, considered in this paper, allows resources to be used efficiently, since free bandwidth is used for backup purposes, while the normal delivery of traffic is guaranteed in peak traffic situations although having no protection guarantees. Our main objective is to quantify the spare capacity, which can be used for restoration (backup) purposes, over a virtual topology designed and optimized to carry a traffic scenario with no survivability and QoS requirements. We analyse the maximum protection (MP) problem in such IP-over-WDM network environment. Protection is provided to IP LSP requests whenever possible through bandwidth reservation in a backup IP LSP on the virtual topology. Besides the mathematical formalization of the MP problem, an upper bound and heuristic algorithms are proposed and evaluated. The traffic considered includes IP LSPs of different granularities and is the worst case traffic scenario for which the network should be dimensioned.  相似文献   

18.
This paper presents an architecture for restorable call allocation and fast virtual path (VP) restoration in mesh ATM networks. In this architecture, virtual working and spare capacities needed for call allocation and restoration are reserved and released dynamically on a call-by-call basis at the time of call admission and termination. This obviates the need for advance assignment of spare and working capacities. To shorten the call processing delay, this is done in a parallel-distributed fashion. To provide restorable call allocation, parallel-distributed call processing algorithms of sender-chooser type are suggested. The algorithms integrate, on the call level, virtual bandwidth allocation, virtual spare-capacity assignment, and fixed, alternate, or state-dependent routing. Each routing scheme leads to a particular tradeoff between call processing complexity, call setup delay, and bandwidth efficiency. For each pair of nodes, two sets of VPs are provisioned. The first, working VP (WVP) set, is used for call allocation during the normal operation. The second, spare VP (SVP) set, is used for WVP restoration in the event of failures of network elements. Each SVP protects a preassigned subset of the node pair's WVPs. Each SVP is selected to be link/node disjoint from the WVPs that it is assigned to protect. This assures a protection of the WVP set by a small number of SVPs. Since SVPs are preset and appropriate virtual spare capacities are reserved in advance, the architecture guarantees full restorability and provides very fast restoration. The restoration is done on the VP level in a self-healing manner. The suggested architecture requires only local information to be maintained at each node  相似文献   

19.
在云计算和数据中心环境中,底层单个物理服务器的失效将对上层虚拟网络的服务性能造成很大的影响,现有利用冗余备份的方法能够在一定程度上降低底层物理设备失效带来的影响,但未考虑到物理服务器的同构性所带来的问题,为此,该文提出一种异构备份式的虚拟网映射方法。首先,只对关键的虚拟机进行冗余备份,降低备份资源的开销;然后,确保提供备份虚拟机的物理服务器与原物理服务器的系统类型的异构性,提高虚拟网的弹性能力;最后,以最小化链路资源开销作为虚拟网的映射目标,进一步降低备份资源的开销。实验表明,该方法在保证虚拟网络映射性能的前提下,能够大大提高虚拟网络的弹性能力。  相似文献   

20.
The self-healing network is particularly interesting with regard to ATM networks, because the restoration time can be shortened by using the advantages of the ATM network. This paper studies a self-healing ATM network based on virtual path (VP) protection switching. First, a novel self-healing algorithm-the double-search self-healing algorithm-is proposed. It is shown that this algorithm can restore failed bidirectional VPs faster and find alternate VPs more effectively than existing self-healing algorithms. Second, it is shown that the restoration information for self-healing control (SHC) messages must be transferred by specific cells carrying the control and OAM information (Ic&o). Message parameters and a cell format are proposed. Third, evaluation of the restoration characteristics using the proposed self-healing algorithm by computer simulation indicates that good performance against a transmission link failure is obtained even in a large-scale network model with 110 nodes. The results also indicate that the VP group (VPG) method can improve the restoration time without reducing the restoration ratio  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号