首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Cremophor EL (cremophor), a component of the paclitaxel formulation, can potentially reverse P-glycoprotein-associated multidrug resistance. A Phase I trial of cremophor as a 6-h infusion every 3 weeks was performed with bolus doxorubicin (50 mg/m2). The cremophor dose was escalated from 1 to 60 ml/m2. A standard paclitaxel premedication was given before cremophor. Using a bioassay, potentially active cremophor levels (> or = 1 microl/ml) were measured in plasma from patients receiving cremophor doses of 30, 45, and 60 ml/m2. A cross-over design was used to assess the influence of cremophor 30 ml/m2 on the pharmacokinetics of doxorubicin and doxorubicinol. The plasma area under the concentration versus time curve (AUC) of doxorubicin increased from 1448 +/- 350 to 1786 +/- 264 ng/ml x h (P = 0.02) in the presence of cremophor, whereas the AUC of doxorubicinol increased from 252 +/- 104 to 486 +/- 107 ng/ml x h (P = 0.02). This pharmacokinetic interaction was associated with significantly increased neutropenia. With reduction of the doxorubicin dose to 35 mg/m2, the cremophor dose was increased to 60 ml/m2. Dose-limiting toxicities occurred in two of six patients after 45 ml/m2 and two of four patients after 60 ml/m2, which included febrile neutropenia and grade III cremophor-related toxicities of rash, pruritus, headache, and hypotension. All patients who received 45 ml/m2 cremophor reached plasma levels > or = 1.5 microl/ml, but at 60 ml/m2, only two of four reached this level, and the calculated plasma clearance of cremophor was significantly faster at this dose. One patient with hepatoma resistant to epirubicin achieved a near-complete response. Cremophor 45 ml/m2 over 6 h with 35 mg/m2 doxorubicin is recommended for further studies. The pharmacokinetic interaction between cremophor and doxorubicin is quantitatively similar to that described in trials of paclitaxel with doxorubicin and suggests that the cremophor in the paclitaxel formulation is responsible.  相似文献   

2.
1. The pharmacokinetics of methyldopa after oral and intravenous administration was studied in hypertensive and normotensive patients. After intravenous administration methyldopa plasma concentrations decayed according to a two-compartment open model. 2. For intravenous administration the overall elimination constant Ke1 was 0.56 +/- 0.03 h-1, the volume of distribution of the central compartment 0.29 +/- 0.80 1 kg-1 and the plasma clearance rate 11.2 +/- 0.6 1 h-1. 3. Plasma half-times during the beta-phase of the methyldopa plasma decay curve following intravenous and oral administration were 2.8 +/- 1.3 and 2.1 +/- 0.7 h, respectively. 4. Maximal plasma levels in hypertensive out-patients show great variation and range from 0 to 1.9 microgram ml-1. 5. No relationships were found between maximal methyldopa plasma levels in patients under treatment and control of hypertension.  相似文献   

3.
The pharmacokinetics of amphotericin B administered in a conventional 5% dextrose (glucose) (5% D) solution and in a 20% fat emulsion formulation (Intralipid; 20% IL) were compared in 16 patients (mean age, 42 years [range, 18 to 70 years]) who had been hospitalized for hematological malignancies and with proven or suspected fungal infections. All of the patients received 50 mg (approximately 1 mg/kg of body weight per day) of amphotericin B daily in random order, either as a 50-ml lipid emulsion (20% IL) (group I) or in 500 ml of 5% D (group II). Five serum samples were taken during the 24 h after drug administration, and the levels of amphotericin B were measured by high-pressure liquid chromatography. Serum amphotericin B concentrations declined rapidly during the first 6 h, and subsequent measurements revealed a slow terminal elimination phase in both groups. The maximum serum amphotericin B concentration was significantly lower when the drug was administered in 20% IL (1.46 +/- 0.61 versus 2.83 +/- 1.17 micrograms/ml; P = 0.02). The area under the concentration-time curve from 0 to 24 h was also much lower in group I (17.22 +/- 11.15 versus 28.98 +/- 15.46 micrograms.h/ml). The half-life of the distribution phase was approximately three times longer in group I (2.92 +/- 2.34 h versus 0.64 +/- 0.24 h; P = 0.011). Conversely, the half-lives of the elimination phase were approximately equal in the two groups (11.44 +/- 5.18 versus 15.23 +/- 5.25 h). The mean residence times were also similar in both groups (19.41 +/- 11.13 versus 19.65 +/- 7.86 h). The clearance and the steady-state volume of distribution of amphotericin B in group I were about twice as great as those in group II (62.97 +/- 35.51 versus 33.01 +/- 14.33 ml/kg/h and 1,043.92 +/- 512.10 versus 562.32 +/- 152.05 ml/kg [P = 0.034], respectively). Finally, the volume of distribution in the central compartment was greater in group I than in group II (618.17 +/- 231.80 versus 328.19 +/- 151.71 ml/kg; P = 0.013), but there were no differences in the volume of distribution in the peripheral compartment (425.75 +/- 352.87 versus 234.14 +/- 75.92 ml/kg). These results suggest that amphotericin B has a different pharmacokinetic profile when it is administered in 20% IL than when it is administered in the standard 5% D form and that the main difference is due to a clear-cut difference in the steady-state volume of distribution, especially that in the central compartment.  相似文献   

4.
The pharmacokinetics of iron were investigated after intravenous administration to 12 healthy volunteers of iron(III)-hydroxide sucrose complex (Venofer) as a single i.v. dose containing 100 mg Fe. The average predose concentration was 35.7 +/- 12.5 mumol/l. There was no statistically significant difference between the serum iron level before injection (0 h) and the level at 24 h after the injection. The compartment model used includes a Michaelis-Menten term and is in excellent agreement with the observed exchange of iron to transferrin and with the daily iron turnover by transferrin. The intravenously injected iron(III)-hydroxide sucrose complex led rapidly to high serum iron levels. Maximum measured levels averaged 538 mumol/l (30.0 mg/l) at 10 min after the injection. The terminal half-life of the injected iron was calculated to be 5.3 h. Mean total area under the curve (AUC) was 1491 mumol/l h, the mean residence time (MRT) was 5.5 h. The total body clearance was 20.5 ml/min. The volume of distribution of the central compartment (Vc) was 3.21, hence close to the volume of the serum; the volume of distribution at steady state (Vdss) was 7.31; and the volume of distribution during elimination (Vdarea) was 9.21. The calculated amount of iron transported by transferrin was 31.0 +/- 6.6 mg Fe/ 24h. In summary, the data show that the injected iron(III)-hydroxide sucrose complex is quickly cleared from the serum with a terminal half-life of approximately 5-6 h. Renal elimination of iron contributed very little to the overall elimination (in average < 5%). Renal elimination of sucrose averaged about 68 +/- 10% and 75 +/- 11% of the administered dose after 4 h and 24 h, respectively.  相似文献   

5.
We studied the pharmacokinetics of intravenously and orally administered lamivudine at six dose levels ranging from 0.5 to 10 mg/kg of body weight in 52 children with human immunodeficiency virus infection. A two-compartment model with first-order elimination from the central compartment was simultaneously fitted to the serum drug concentration-time data obtained after intravenous and oral administration. The maximal concentration at the end of the 1-h intravenous infusion and the area under the concentration-time curve after oral and intravenous administration increased proportionally with the dose. The mean clearance of lamivudine (+/- standard deviation) in the children was 0.53 +/- 0.19 liter/kg/h (229 +/- 77 ml/min/m2 of body surface area), and the mean half-lives at the distribution and elimination phases were 0.23 +/- 0.18 and 2.2 +/- 2.1 h, respectively. Clearance was age dependent when normalized to body weight but age independent when normalized to body surface area. Lamivudine was rapidly absorbed after oral administration, and 66% +/- 25% of the oral dose was absorbed. Serum lamivudine concentrations were maintained above 1 microM for >/=8 h of 24 h on the twice daily oral dosing schedule with doses of >/=2 mg/kg. The cerebrospinal fluid drug concentration measured 2 to 4 h after the dose was 12% (range, 0 to 46%) of the simultaneously measured serum drug concentration. A limited-sampling strategy was developed to estimate the area under the concentration-time curve for concentrations in serum at 2 and 6 h.  相似文献   

6.
Several studies have shown that exogenous human growth hormone (HGH) exerts an anabolic effect on protein metabolism in surgical patients with mild or moderate catabolism. However, contradictory results have been demonstrated in polytrauma patients where HGH did not improve protein metabolism. Aim of this study was to evaluate whether the pharmacokinetics of recombinant biosynthetic human GH (r-HGH) are altered in critically ill patients. After an overnight fast, r-HGH was infused at a rate of 460 micrograms/h/kg/bw during 120 min to five intensive care unit (ICU) patients. The patients were catabolic (nitrogen balance -11 +/- 0.5), showed normal liver function, and only one patient had a slightly impaired kidney function (creatinine > 1.5 mg/dl). Endogenous GH secretion was suppressed by continuous infusion of 50 micrograms/m2/h somatostatin. From plasma GH curves, elimination half life (t1/2kle), whole body clearance (Cltot) and steady state distribution space (DS) were calculated in an open two compartment model. Additionally, the effects of r-HGH infusion on plasma insulin, glucagon and amino acid concentrations were evaluated. T1/2kle was 19.6 +/- 2.3 min, Cltot 2.9 +/- 0.4 ml/kg/bw/min and DS 76.4 +/- 3.8 ml/kg/bw for 90 min. The plasma levels of total amino acids including the branched chain amino acids valine, leucine and isoleucine and of glutamine were significantly higher during r-HGH infusion than during the basal and somatostatin periods. In conclusion, the elimination of r-HGH in catabolic ICU patients is not different from that of healthy volunteers.  相似文献   

7.
Morphine is used as an anesthetic supplement. Its disposition in surgical patients under enflurane-nitrous oxide anesthesia has not been determined. Available data on morphine concentrations in plasma after equivalent intravenous doses are conflicting, possibly as a result of varying degrees of specificity of the analytical methods for the unchanged, pharmacologically active form of the drug. This study determined the pharmacokinetics of morphine (0.05, 0.1, 0.14, or 0.2 mg/kg) injected intravenously in 10 surgical patients anesthetized with enflurane-N2O-O2. Arterial plasma was analyzed for unchanged morphine and conjugated morphine. Specificity of the analytical procedure for unchanged morphine was achieved by the combination of solvent extraction and radioimmunoassay techniques. Kinetic indices were derived by nonlinear least-squares analysis of log concentration (ng/ml) vs. time relationships. Morphine disposition was independent of dose in this fourfold range and was best described by a three-compartment model with a mean elimination half-time (t1/2 beta) of 104 +/- 5 min. The apparent volumes of distribution (Vd) and of the central compartment (V1) were 3.4 +/- 0.2 and 0.13 +/- 0.02 l/kg, respectively, while the clearance (ClB) was 23 +/- 1 ml x min-1 x kg-1. Extraction of morphine by the liver appeared to be complete. Conjugated morphine was eliminated from plasma with a t1/2 beta of 169 +/- 15 min. The ultimate elimination of morphine from the body was dependent upon its uptake from slowly perfused peripheral tissues, K10 greater than k31(P less than .001).  相似文献   

8.
In vivo microdialysis was used to estimate the extracellular concentrations of ceftazidime and ceftriaxone, two expanded-spectrum cephalosporins commonly used in the treatment of bacterial meningitis, in two brain regions (the right corpus striatum and the left lateral ventricle_ of awake, freely moving rats. Antibiotics were administered by constant intravenous infusion at 18 mg/h until steady-state levels were reached. Ceftriaxone levels measured at the steady state in the extracellular space of the corpus striatum (0.80 +/- 0.17 micrograms/ml) were statistically equivalent to those obtained in the cerebrospinal fluid of the lateral ventricle (0.71 +/- 0.15 micrograms/ml). The ratios of these levels in the brain to the steady-state levels in plasma were 0.5 +/- 0.1% for both regions. The postinfusion concentrations of ceftriaxone in the brain declined monoexponentially, with an elimination half-life similar to that obtained in plasma. However, the mean antibiotic concentration of ceftazidime in the striatum (2.2 +/- 0.4 micrograms/ml) was lower (P < 0.001) than that in the lateral ventricle (3.8 +/- 0.5% and 4.0 +/- 1.8%, respectively) were higher than those obtained with ceftriaxone. Moreover, the half-life of ceftazidime elimination from plasma was lower than that obtained in the two brain regions. It was concluded that the in vivo microdialysis technique yields useful data on antibiotic distribution in the extracellular space of the brain, that the distribution may not be homogeneous, and that the decay of postinfusion concentrations in the brain may be different from the decay of postinfusion concentrations in plasma.  相似文献   

9.
The pharmacokinetics of intravenously administered 14C-delta9-tetrahydrocannabinol and derived radiolabeled metabolites were studied in three dogs at two doses each at 0.1 or 0.5 and 2.0 mg/kg. Two dogs were biliary cannulated; total bile was collected in one and sampled in the other. The time course for the fraction of the dose per milliliter of plasma was best fit by a sum of five exponentials, and there was no dose dependency. No drug was excreted unchanged. The mean apparent volume of distribution of the central compartment referenced to total drug concentration in the plasma was 1.31 +/- 0.07 liters, approximately the plasma volume, due to the high protein binding of 97%. The mean metabolic clearance of drug in the plasma was 124 +/- 3.8 ml/min, half of the hepatic plasma flow, but was 4131 +/- 690 ml/min referenced to unbound drug concentration in the plasma, 16.5 times the hepatic plasma flow, indicating that net metabolism of both bound and unbound drug occurs. Apparent parallel production of several metabolites occurred, but the pharmacokinetics of their appearance were undoubtedly due to their sequential production during liver passage. The apparent half-life of the metabolic process was 6.9 +/- 0.3 min. The terminal half-life of delta9-tetrahydrocannabinol in the pseudo-steady state after equilibration in an apparent overall volume of distribtuion of 2170 +/- 555 liters referenced to total plasma concentration was 8.2 +/- 0.23 days, based on the consistency of all pharmacokinetic data. The best estimate of the terminal half-life, based only on the 7000 min that plasma levels could be monitored with the existing analytical sensitivity, was 1.24 days. However, this value was inconsistent with the metabolite production and excretion of 40-45% of dose in feces, 14-16.5% in urine, and 55% in bile within 5 days when 24% of the dose was unmetabolized and in the tissue at that time. These data were consistent with an enterohepatic recirculation of 10-15% of the metabolites. Intravenously administered radiolabeled metabolites were totally and rapidly eliminated in both bile and urine; 88% of the dose in 300 min with an apparent overall volume of distribution of 6 liters. These facts supported the proposition that the return of delta9-tetrahydrocannabinol from tissue was the rate-determining process of drug elimination after initial fast distribution and metabolism and was inconsistent with the capability of enzyme induction to change the terminal half-life.  相似文献   

10.
The objective of this study was to assess the pharmacokinetics and pharmacodynamics of the dextro (d-) isomer of sotalol, a class III antiarrhythmic agent, in healthy young men and women after a single intravenous bolus dose. The design was open-label, randomized, parallel group. Each group (4 men and 4 women) received either 0.5, 1.5, or 3.0 mg/kg d-sotalol as an intravenous infusion for 2 minutes. Serial measurements of the d-sotalol plasma concentration and the Q-Tc interval data were recorded before, during, and for 72 hours after drug administration. The pharmacokinetics of d-sotalol were found to be well described by a three-compartment model with linear elimination clearance from the central compartment. There were no significant differences in the elimination clearance or volume of the central compartment between dose levels or between men and women. However, women were found to have a lower steady-state volume of distribution than men (1.20 L/Kg versus 1.43 L/Kg). The Q-Tc versus d-sotalol plasma concentration data were fitted to a model that assumed a distinct "effect compartment" and sigmoidal Emax response. The baseline Q-Tc, determined from the fittings, was found to be significantly higher in women (0.40 versus 0.38 seconds). The effect compartment clearance was found to be highly variable, with a median of 12.3 (range, 0.2-671,300) L/h. There were statistically significant differences in the effect compartment clearance by dose among men and by gender at a dose of 1.5 mg/kg. There were no significant differences detected between dose groups or genders for the d-sotalol effect site concentration at one half the maximum Q-Tc prolongation from baseline (EC50), EMAX, (the maximum Q-Tc prolongation from baseline) or the Hill coefficient. In conclusion, the pharmacokinetics of d-sotalol after intravenous administration are independent of dose and gender, because the difference between men and women in volume of distribution at steady-state is not clinically significant. The pharmacodynamics of Q-Tc prolongation produced by d-sotalol appear to be independent of dose and gender; however, there is considerable variability in the time course of effects on Q-Tc between individuals.  相似文献   

11.
In seven healthy male volunteers the effects of the pattern of dosing on the pharmacokinetics of diazepam have been studied. A cross-over design was employed that consisted of three parts: a single intravenous dose (0.1 mg/kg), and oral dosing (10 mg/day) for six days followed by an intravenous bolus (0.1 mg/kg) on the seventh day, followed by re-examination of a single intravenous dose after diazepam (D) and its major metabolite desmethyldiazepam (DD) had been completely eliminated. Plasma levels of D and DD were monitored by a specific, sensitive GLC-method. In younger patients (n = 5, age 29 - 35 years) the elimination half-life, T1/2(beta), of D was 33.9 +/- 10.6 h (mean +/- S.D.) after the single dose. The control study gave an almost identical result (35.7 +/- 12.1). After subchronic dosage in all patients T1/2(beta) showed a modest but significant prolongation (paired t-test p less than 0.01) to 52.9 +/- 17.4 h. It was caused by a significant decrease (p = 0.016) in total plasma clearance (Cl), from 26.0 +/- 10.8 ml/min. Older patients (age 43-60 years) showed the same phenomenon. Blood/plasma ratios remained constant indicating no change in protein binding. Biliary excretion of D was measured in five patients with a T-tube. Only negligible amounts (0.3 - 0.4%) of administered D were excreted within 3 days after subchronic dosage, which demonstrates a lack of enterohepatic cycling of D. After multiple administration of D, there was accumulation of DD to levels approximately five times higher than after a single dose. The possibility that the slower elimination of D after subchronic treatment might be caused by DD was also supported by experiments in dogs and rabbits. After pretreating rabbits with DD and maintaining a high DD plasma level, there was prolongation of T1/2(beta) from 2.7 h to 5.2 h, with a corresponding decrease of Cl from 101.6 ml/min to 23.4 ml/min. Similar results were obtained in dogs. It is concluded that the disposition of D is altered by subchronic use and may be regulated by the plasma DD concentration.  相似文献   

12.
3,4-Dihydro-2-amino-6-methyl-4-oxo-5-(4-pyridylthio)-quinazolon e dihydrochloride (AG337) is a nonclassical inhibitor of thymidylate synthase (TS) designed to avoid potential resistance mechanisms that can limit the activity of classical antifolate antimetabolites. A clinical pharmacokinetic and pharmacodynamic study of AG337 given as a 24-h i.v. infusion was performed. Thirteen patients received 27 courses over the dose range 75-1350 mg/m2. Plasma AG337 concentrations were achieved which, in preclinical models, were associated with antitumor effects. AG337 clearance was saturable, and the pharmacokinetics of the drug at doses above 300 mg/m2 was best described by a one-compartment model with saturable elimination (median Km = 6.5 microgram/ml; range, 4.1-13 microgram/ml; median Vmax = 2.0 microgram/ml/h/m2; range, 0.96-5.6 microgram/ml/h/m2). Following the end of the infusion, AG337 was cleared rapidly (t1/2, 53-193 min), and levels were less than 0.2 microgram/ml in all patients by 48 h. Plasma protein binding was 96-98%, and the urinary excretion of AG337 as unchanged drug did not exceed 30% of the dose administered. Measurements of plasma deoxyuridine (dUrd) concentrations showed that doses of 600 mg/m2 and above of AG337 produced a consistent elevation in plasma dUrd levels (60-290%), suggesting that TS inhibition was being achieved in patients. However, in all cases dUrd concentrations had returned to pretreatment levels 24 h after the end of the infusion, suggesting that TS inhibition was not maintained. Local toxicity, probably due to the infusate pH, was the only significant adverse effect observed. These studies have shown that cytotoxic AG337 plasma concentrations can be readily achieved without acute toxicity and that these concentrations are associated with elevations in plasma dUrd levels. The lack of prolonged dUrd elevations indicates that extended administration should be explored using central line or p.o. administration to avoid local toxicity.  相似文献   

13.
This Phase I dose-escalation clinical trial of a lyophilized formulation of titanocene dichloride (MKT4) was conducted to determine the maximum tolerated dose, the dose-limiting toxicity (DLT), and pharmacokinetics of titanium (Ti) after a single i.v. infusion of MKT4. Forty patients with refractory solid malignancies were treated with a total of 78 courses. Using a modified Fibonacci scheme, 15 mg/m2 initial doses of titanocene dichloride were increased in cohorts of three patients up to level 11 (560 mg/m2) if DLT was not observed. The maximum tolerated dose was 315 mg/m2, and nephrotoxicity was DLT. Two minor responses (bladder carcinoma and non-small cell lung cancer) were observed. The pharmacokinetics of plasma Ti were assessed in 14 treatment courses by atomic absorption spectroscopy. The ratio for the area under the curve(0-infinity) in plasma and whole blood was 1.2. The following pharmacokinetic parameters were determined for plasma, as calculated in a two-compartment model: biological half-life t1/2beta in plasma was 22.8+/-11.2 h (xh +/- pseudo-SD), peak plasma concentration cmax approximately 30 microg/ml at a dose of 420 mg/m2, distribution volume Vss= 5.34+/-2.1 L (xa +/- SD), and a total clearance CItotal = 2.58+/-1.23 ml/min (xa +/- SD). There was a linear correlation between the area under the curve(0-infinity) of Ti in plasma and the titanocene dichloride dose administered with a correlation coefficient r2 of 0.8856. Plasma protein binding of Ti was in the 70-80% range. Between 3% and 16% of the total amount of Ti administered were renally excreted during the first 36 h. The recommended dose for Phase II evaluation is 240 mg/m2 given every 3 weeks with i.v. hydration to reduce renal toxicity.  相似文献   

14.
OBJECTIVES: Major operative trauma like aorta-coronary bypass operation may lead to postoperative immunodisturbance, putting the patient at an increased risk for infection and sepsis. The monocyte/macrophage system and the endotoxin receptor CD14 are important in the early recognition and elimination of invading bacteria. The aim of this study was to analyze changes in membrane-associated CD14 and soluble CD14 during and after cardiac involving cardiopulmonary bypass. METHODS: We studied numbers of leukocytes, monocytes, and monocyte subpopulations, expression of monocyte membrane-associated CD14 and plasma levels of soluble CD14 in 10 patients (63 +/- 8 years of age), who underwent elective cardiopulmonary bypass. RESULTS: Cardiopulmonary bypass induced marked postoperative monocytosis, which was maximal 20 hours after the operation (485 +/- 242 cells/microl before, 1080 +/- 264 cells/microl 20 hours after surgery). Expression of membrane-associated CD14 on classical CD14++ monocytes decreased significantly by 40%, reaching a nadir 20 hours after surgery (p < 0.05). At the time of maximal membrane-associated CD14 suppression, the levels of soluble CD14 measured by enzyme-linked immunosorbent assay were clearly increased (3.2 +/- 1.0 microg/ml before versus 5.6 +/- 1.0 microg/ml 20 hours after, p < 0.001). No significant change of the percentage of small (alpha) and large (beta) forms of soluble CD14 was found. CONCLUSIONS: Cardiopulmonary bypass leads to reduced membrane-associated CD14 expression on peripheral blood monocytes and increased levels of soluble CD14 through shedding or secretion of membrane-associated CD14 from the cell surface. These findings indicate that bypass is associated with significant monocyte activation.  相似文献   

15.
Dynorphins and beta-endorphin in human plasma were characterized and studied quantitatively using radioimmunoassay, high-performance liquid chromatography (HPLC), and mass spectrometry. Most immunoreactive (ir) dynorphin B and beta-endorphin in human plasma coeluted with authentic peptides in analysis. Dynorphin A was not detected. Added to human plasma it was rapidly converted into Leu-enkephalin-Arg6 followed by elimination of the C-terminal arginine after prolonged incubation. The rate of dynorphin A conversion was estimated at 40 pmol/min/microl plasma. This process was inhibited by the thiol protease inhibitor, PHMB and by EDTA. Dynorphin B, alpha-neoendorphin and big dynorphin were virtually not metabolized by plasma proteases under the same conditions. beta-endorphin was processed into beta-endorphin(1-19) and the corresponding C-terminal counterpart beta-endorphin(20-31) at a rate of about 25 pmol/min/microl of plasma. Based on the above data, a reliable strategy was established to measure dynorphin B- and beta-endorphin-ir in human plasma samples. The basal levels in a male control group were 0.99 +/- 0.11 (n = 11) and 16.3 +/- 1.5 (n = 11) fmol/ml plasma, respectively.  相似文献   

16.
1,2-Epoxybutene (BMO) and diepoxybutane (BDE) are metabolic products of 1,3-butadiene in rodents. Both BMO and BDE are suspect in the development of tumors in rats and mice. To understand the distribution and elimination of these compounds in the absence of the rate-limiting production from butadiene, the pharmacokinetics of BMO and BDE in blood were determined in adult male Sprague-Dawley rats following intravenous administration. All animals were dually cannulated in these studies. For the BMO studies, rats were dosed with 71, 143, or 286 mumol/kg BMO (n = 3 for each dose group). For the BDE studies, rats were dosed with 523 mumol/kg BDE (n = 3). All animals tolerated the BMO and BDE doses without grossly observable adverse effects. Blood was drawn at predetermined time points and extracted in methylene chloride. BDE and BMO concentrations were quantitated by gas chromatography or gas chromatography/mass spectrometry. The BMO distribution half-lives were short and ranged from 1.4 min at the lowest dose to 1.8 min at the highest dose. Volume of distribution at steady state ranged from 0.53 +/- 0.17 to 0.59 +/- 0.31 l/kg. Systemic clearances ranged from 67 +/- 17 to 114 +/- 20 ml/min per kg. The terminal elimination half-lives were also short and ranged from 5.7 to 8.5 min among the doses. The pharmacokinetic parameters after an i.v. dose of 523 mumol/kg BDE were a distribution half-life of 2.7 min, terminal elimination T1/2 of 14 min, volume of distribution at steady state of 0.73 +/- 0.06 l/kg, and systemic clearance of 76 +/- 8 ml/min per kg. These pharmacokinetic parameters demonstrate the similarity between disposition of the two epoxides in rats, that include a rapid distribution after i.v. administration into a small extravascular body compartment as well as a rapid elimination from blood. These pharmacokinetic data provide useful blood clearance information for assessing the critical physiological and biochemical determinants underlying the disposition of butadiene epoxides.  相似文献   

17.
The pharmacokinetics of boron was studied in rats by administering a 1 ml oral dose of sodium tetraborate solution to several groups of rats (n=20) at eleven different dose levels ranging from 0 to 0.4 mg/100 g body weight as boron. Twenty-four-hour urine samples were collected after boron administration. After 24 h the average urinary recovery rate for this element was 99.6+/-7.9. The relationship between boron dose and excretion was linear (r=0.999) with a regression coefficient of 0.954. This result suggests that the oral bioavailability (F) of boron was complete. Another group of rats (n=10) was given a single oral injection of 2 ml of sodium tetraborate solution containing 0.4 mg of boron/100 g body wt. The serum decay of boron was followed and found to be monophasic. The data were interpreted according to a one-compartment open model. The appropriate pharmacokinetic parameters were estimated as follows: absorption half-life, t1/2a=0.608+/-0.432 h; elimination half-life, t1/2=4.64+/-1.19 h; volume of distribution, Vd = 142.0+/-30.2 ml/100 g body wt.; total clearance, Ctot=0.359+/-0.0285 ml/min per 100 g body wt. The maximum boron concentration in serum after administration (Cmax) was 2.13+/-0.270 mg/l, and the time needed to reach this maximum concentration (Tmax) was 1.76+/-0.887 h. Our results suggest that orally administered boric acid is rapidly and completely absorbed from the gastrointestinal tract into the blood stream. Boric acid in the intravascular space does not have a strong affinity to serum proteins, and rapidly diffuses to the extravascular space in proportion to blood flow without massive accumulation or binding in tissues. The main route of boron excretion from the body is via glomerular filtration. It may be inferred that there is partial tubular resorption at low plasma levels. The animal model is proposed as a useful tool to approach the problem of environmental or industrial exposure to boron or in cases of accidental acute boron intoxication.  相似文献   

18.
The pharmacokinetics of the antifungal pradimicin derivative BMS 181184 in plasma of normal, catheterized rabbits were characterized after single and multiple daily intravenous administrations of dosages of 10, 25, 50, or 150 mg/kg of body weight, and drug levels in tissues were assessed after multiple dosing. Concentrations of BMS 181184 were determined by a validated high-performance liquid chromatography method, and plasma data were modeled into a two-compartment open model. Across the investigated dosage range, BMS 181184 demonstrated nonlinear, dose-dependent kinetics with enhanced clearance, reciprocal shortening of elimination half-life, and an apparently expanding volume of distribution with increasing dosage. After single-dose administration, the mean peak plasma BMS 181184 concentration (Cmax) ranged from 120 microg/ml at 10 mg/kg to 648 microg/ml at 150 mg/kg; the area under the concentration-time curve from 0 to 24 h (AUC0-24) ranged from 726 to 2,130 microg . h/ml, the volume of distribution ranged from 0.397 to 0.799 liter/kg, and the terminal half-life ranged from 4.99 to 2.31 h, respectively (P < 0.005 to P < 0.001). No drug accumulation in plasma occurred after multiple daily dosing at 10, 25, or 50 mg/kg over 15 days, although mean elimination half-lives were slightly longer. Multiple daily dosing at 150 mg/kg was associated with enhanced total clearance and a significant decrease in AUC0-24 below the values obtained at 50 mg/kg (P < 0.01) and after single-dose administration of the same dosage (P < 0.05). Assessment of tissue BMS 181184 concentrations after multiple dosing over 16 days revealed substantial uptake in the lungs, liver, and spleen and, most notably, dose-dependent accumulation of the drug within the kidneys. These findings are indicative of dose- and time-dependent elimination of BMS 181184 from plasma and renal accumulation of the compound after multiple dosing.  相似文献   

19.
20.
Nafcillin, a semisynthetic penicillin effective against penicillinase-producing staphylococci, is eliminated largely in man via the liver. This study assessed the effect of cirrhosis and extrahepatic biliary obstruction in man on the pharmacokinetics of nafcillin. The plasma clearance of nafcillin controls was 583 +/- 144.2 ml per min (mean +/- SD) and fell strikingly to 291 +/- 147.6 and 163 +/- 56.3 ml per min in patients with cirrhosis and extrahepatic obstruction, respectively (P less than 0.001). In the latter two groups nafcillin excreted in urine increased from about 30 to 50% of administered dose (P less than 0.02), suggesting that renal disease superimposed on hepatic disease would further decrease over-all nafcillin clearance. The depression of nafcillin clearance with hepatobiliary disease did not correlate with any conventional liver laboratory test. The initial volume of distribution of nafcillin (V1) was unaltered but at steady state (Vd()) there was a significant reduction in the distribution volume in the patients with liver disease. Accordingly, the impairment in drug elimination, as assessed by its clearance from plasma, was underestimated by the prolongation of the nafcillin elimination half-life (t1/2(beta)) which was 1.02 +/- 0.20 hr in controls, and 1.23 +/- 0.31 (P greater than 0.05) and 1.73 +/- 0.44 hr (P less than 0.03), respectively, in patients with cirrhosis and extrahepatic obstruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号