首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subclass IIb aminoacyl-tRNA synthetases (Asn-, Asp- and LysRS) recognize the anticodon triplet of their cognate tRNA (GUU, GUC and UUU, respectively) through an OB-folded N-terminal extension. In the present study, the specificity of constitutive lysyl-tRNA synthetase (LysS) from Escherichia coli was analyzed by cross-mutagenesis of the tRNA(Lys) anticodon, on the one hand, and of the amino acid residues composing the anticodon binding site on the other. From this analysis, a tentative model is deduced for both the recognition of the cognate anticodon and the rejection of non-cognate anticodons. In this model, the enzyme offers a rigid scaffold of amino acid residues along the beta-strands of the OB-fold for tRNA binding. Phe85 and Gln96 play a critical role in this spatial organization. This scaffold can recognize directly U35 at the center of the anticodon. Specification of the correct enzyme:tRNA complex is further achieved through the accommodation of U34 and U36. The binding of these bases triggers the conformationnal change of a flexible seven-residue loop between strands 4 and 5 of the OB-fold (L45). Additional free energy of binding is recovered from the resulting network of cooperative interactions. Such a mechanism would not depend on the modifications of the anticodon loop of tRNA(Lys) (mnm5s2U34 and t6A37). In the model, exclusion by the synthetase of non-cognate anticodons can be accounted for by a hindrance to the positioning of the L45 loop. In addition, Glu135 would repulse a cytosine base at position 35. Sequence comparisons show that the composition and length of the L45 loop are markedly conserved in each of the families composing subclass IIb aminoacyl-tRNA synthetases. The possible role of the loop is discussed for each case, including that of archaebacterial aspartyl-tRNA synthetases.  相似文献   

2.
We show here that the class I human cytoplasmic isoleucyl-tRNA synthetase is an exceptionally large polypeptide (1266 aa) which, unlike its homologues in lower eukaryotes and prokaryotes, has a third domain of two repeats of an approximately 90-aa sequence appended to its C-terminal end. While extracts of Escherichia coli do not aminoacrylate mammalian tRNA with isoleucine, expression of the cloned human gene in E. coli results in charging of the mammalian tRNA substrate. The appended third domain is dispensable for detection of this aminoacylation activity and may be needed for assembly of a multisynthetase complex in mammalian cells. Alignment of the sequences of the remaining two domains shared by isoleucyl-tRNA synthetases from E. coli to human reveals a much greater selective pressure on the domain needed for tRNA acceptor helix interactions and catalysis than on the domain needed for interactions with the anticodon. This result may have implications for the historical development of an operational RNA code for amino acids.  相似文献   

3.
Among the twenty aminoacyl-tRNA synthetases glutaminyl-tRNA synthetase occupies a special position: it is one of only two enzymes of this family which is not found in all organisms, being mainly absent from gram positive eubacteria, archaebacteria and organelles. The E. coli GlnRS is relatively small with 553 amino acids and a molecular mass of 64.4 kDa and functions as a monomer. The mammalian enzymes are somewhat larger and can be parts of multienzyme complexes. Crystal structures were solved of E. coli GlnRS complexed with tRNA(Gln) and ATP, of this complex containing tRNA(Gln) replaced by unmodified tRNA(Gln), and of three complexes with mutated GlnRS enzymes. The GlnRS molecule consists of four domains, the catalytic site is located in the Rossman fold, typical for class I synthetases, and the reaction mechanism follows the normal adenylate pathway. The enzyme shows many similarities with glutamyl-tRNA synthetase; a common ancestor of both molecules is well established. In the E. coli system recognition of the cognate tRNA has been studied in many details using both natural and artificial mutants of tRNA(Gln) and of the enzyme: GlnRS recognizes mainly conventional parts of the tRNA molecule, namely some bases of the anticodon loop and parts of the acceptor stem.  相似文献   

4.
A mutant of E. coli K-12 has been isolated which has only 1-3% of the wild-type lysyl-tRNA synthetase activity [L-lysine:tRNA ligase (AMP forming), EC 6.1.1.6]. Additions of 20 mM L-alanine or 6 mM leucine dipeptides to the culture medium can restore the activity of lysyl-tRNA synthetase in the mutant strain to the wild-type level. Experiments on the in vivo charging of lysine tRNA in the mutant show that in the absence of the metabolites lysine tRNA is charged 15-23%. Upon the addition of 3 mM L-leucyl-L-alanine to the medium the lysyl tRNA synthetase activity increases 25-fold and the in vivo charging of lysine tRNA returns to the wild-type level. Experiments with antibody against lysyl-tRNA synthetase show that the stimulation of lysyl-tRNA synthetase activity by the metabolites is the result of new protein synthesis.  相似文献   

5.
Aminoacyl-tRNA synthetases catalyze aminoacylation of tRNAs by joining an amino acid to its cognate tRNA. The selection of the cognate tRNA is jointly determined by separate structural domains that examine different regions of the tRNA. The cysteine-tRNA synthetase of Escherichia coli has domains that select for tRNAs containing U73, the GCA anticodon, and a specific tertiary structure at the corner of the tRNA L shape. The E. coli enzyme does not efficiently recognize the yeast or human tRNACys, indicating the evolution of determinants for tRNA aminoacylation from E. coli to yeast to human and the coevolution of synthetase domains that interact with these determinants. By successively modifying the yeast and human tRNACys to ones that are efficiently aminoacylated by the E. coli enzyme, we have identified determinants of the tRNA that are important for aminoacylation but that have diverged in the course of evolution. These determinants provide clues to the divergence of synthetase domains. We propose that the domain for selecting U73 is conserved in evolution. In contrast, we propose that the domain for selecting the corner of the tRNA L shape diverged early, after the separation between E. coli and yeast, while that for selecting the GCA-containing anticodon loop diverged late, after the separation between yeast and human.  相似文献   

6.
The accuracy of protein synthesis essentially rests on aminoacyl-tRNA synthetases that ensure the correct attachment of an amino acid to the cognate tRNA molecule. The selection of the amino acid substrate involves a recognition stage generally followed by a proofreading reaction. Therefore, to change the amino acid specificity of a synthetase in the aminoacylation reaction, it is necessary to alleviate the molecular barriers which contribute its editing function. In an attempt to accommodate a noncognate amino acid into the active site of a synthetase, we chose a pair of closely related enzymes. The current hypothesis designates glutaminyl-tRNA synthetase (GlnRS) as a late component of the protein synthesis machinery, emerging in the eukaryotic lineage by duplication of the gene for glutamyl-tRNA synthetase (GluRS). By introducing GluRS-specific features into the Rossmann dinucleotide-binding domain of human GlnRS, we constructed a mutant GlnRS which preferentially aminoacylates tRNA with glutamate instead of glutamine. Our data suggest that not only the transition state for aminoacyl-AMP formation but also the proofreading site of GlnRS are affected by that mutation.  相似文献   

7.
Nucleotides in tRNAs that are conserved among isoacceptors are typically considered as candidates for tRNA synthetase recognition, with less importance attached to non-conserved nucleotides. Although the anticodon is an important contributor to the identity of methionine tRNAs, the class I methionine tRNA synthetase aminoacylates microhelices with high specificity. The microhelix substrates are comprised of as few as the 1st 4 base pairs of the acceptor stems of the elongator and initiator methionine tRNAs. For these two tRNAs, only the central 2:71 and 3:70 base pairs are common to the 1st 4 acceptor stem base pairs. We show here that, although the flanking 4:69 base pair is not conserved, a particular substitution at this position substantially reduces the gel electrophoresis-detected aminoacylation of an acceptor stem substrate that has the conserved 2:71 and 3:70 base pairs. Although the two methionine tRNAs have either U:A or G:C at position 4:69, substitution with C:G reduces charging of 9- or 4-base pair substrates that recreate part or all of the acceptor stem of a methionine tRNA. This effect is sufficient for methionine tRNA synthetase to discriminate between the closely related methionine and isoleucine tRNA acceptor stems. The ability to distinguish G:C and U:A from C:G is contrary to a simple scheme for recognition of atoms in the RNA minor groove.  相似文献   

8.
In mammalian cells valyl-tRNA synthetase (ValRS) forms a high Mr complex with the four subunits of elongation factor EF-1H. The beta, gamma, and delta subunits, that contribute the guanine nucleotide exchange activity of EF-1H, are tightly associated with the NH2-terminal polypeptide extension of valyl-tRNA synthetase. In this study, we have examined the possibility that the functioning of the companion enzyme EF-1alpha could regulate valyl-tRNA synthetase activity. We show here that the addition of EF-1alpha and GTP in excess in the aminoacylation mixture is accompanied by a 2-fold stimulation of valyl-tRNAVal synthesis catalyzed by the valyl-tRNA synthetase component of the ValRS.EF-1H complex. This effect is not observed in the presence of EF-1alpha and GDP or EF-Tu.GTP and requires association of valyl-tRNA synthetase within the ValRS.EF-1H complex. Since valyl-tRNA synthetase and elongation factor EF-1alpha catalyze two consecutive steps of the in vivo tRNA cycle, aminoacylation and formation of the ternary complex EF-1alpha.GTP. Val-tRNAVal that serves as a vector of tRNA from the synthetase to the ribosome, the data suggest a coordinate regulation of these two successive reactions. The EF-1alpha.GTP-dependent stimulation of valyl-tRNA synthetase activity provides further evidence for tRNA channeling during protein synthesis in mammalian cells.  相似文献   

9.
G.U wobble pairs are crucial to many examples of RNA-protein recognition. We previously concluded that the G.U wobble pair in the acceptor helix of Escherichia coli alanine tRNA (tRNA(Ala)) is recognized indirectly by alanyl-tRNA synthetase (AlaRS), although direct recognition may play some role. Our conclusion was based on the finding that amber suppressor tRNA Ala with G.U shifted to an adjacent helical site retained substantial but incomplete Ala acceptor function in vivo. Other researchers concluded that only direct recognition is operative. We report here a repeat of our original experiment using tRNA(Lys) instead of tRNA(Ala). We find, as in the original experiment, that a shifted G.U confers Ala acceptor activity. Moreover, the modified tRNA(Lys) was specific for Ala, corroborating our original conclusion and making it more compelling.  相似文献   

10.
11.
Mutation of the Arabidopsis thaliana tRNA (Trp)(CCA) anticodon or of the A73 discriminator base greatly diminishes in vitro aminoacylation with tryptophan, indicating the importance of these nucleotides for recognition by the plant tryptophanyl-tRNA synthetase. Mutation of the tRNA (Trp)(CCA) anticodon to CUA so as to translate amber nonsense codons permits tRNA (Trp)(CCA) to be aminoacylated by A.thaliana lysyl-tRNA synthetase. Thus, translational suppression by tRNA (TRP)(CCA) observed in plant cells includes significant incorporation of lysine into protein.  相似文献   

12.
An operational RNA code relates amino acids to specific structural features located in tRNA acceptor stems. In contrast to the universal nature of the genetic code, the operational RNA code can vary in evolution due to coadaptations of the contacts between aminoacyl-tRNA synthetases and the acceptor stems of their cognate tRNA substrates. Here we demonstrate that, for class II prolyl-tRNA synthetase (ProRS), functional coadaptations have occurred in going from the bacterial to the human enzyme. Analysis of 20 ProRS sequences that cover all three taxonomic domains (bacteria, eucarya, and archaea) revealed that the sequences are divided into two evolutionarily distant groups. Aminoacylation assays showed that, while anticodon recognition has been maintained through evolution, significant changes in acceptor stem recognition have occurred. Whereas all tRNAPro sequences from bacteria strictly conserve A73 and C1.G72, all available cytoplasmic eukaryotic tRNAPro sequences have a C73 and a G1.C72 base pair. In contrast to the Escherichia coli synthetase, the human enzyme does not use these elements as major recognition determinants, since mutations at these positions have only small effects on cognate synthetase charging. Additionally, E. coli tRNAPro is a poor substrate for human ProRS, and the presence of the human anticodon-D stem biloop domain was necessary and sufficient to confer efficient aminoacylation by human ProRS on a chimeric tRNAPro containing the E. coli acceptor-TpsiC stem-loop domain. Our data suggest that the two ProRS groups may reflect coadaptations needed to accommodate changes in the operational RNA code for proline.  相似文献   

13.
14.
Aminoacyl-tRNA synthetases activate amino acids with ATP to form aminoacyl adenylates as the essential intermediates for aminoacylation of their cognate tRNAs. The class I Escherichia coli cysteine tRNA synthetase contains an N-terminal nucleotide binding fold that provides the catalytic site of adenylate synthesis. The C-terminal domain of the cysteine enzyme is predominantly alpha-helical and contains a leucine heptad repeat motif. We show here that specific substitutions of leucines in the leucine heptad repeats reduced tRNA aminoacylation. In particular, substitution of Leu316 with phenylalanine reduced the catalytic efficiency of aminoacylation by 1000-fold. This deleterious effect was partially alleviated by a more conservative substitution of leucine with valine. Filter binding assays show that neither the phenylalanine nor the valine substitution at Leu316 had a major effect on the ability of the cysteine enzyme to bind tRNA(Cys). In contrast, pyrophosphate exchange assays show that both substitutions decreased the adenylate synthesis activity of the enzyme. Analysis of these results suggests that the primary defect of the valine substitution is executed at adenylate synthesis while that of the phenylalanine substitution is at both adenylate synthesis and the transition state of tRNA aminoacylation. Thus, although Leu316 is located in the C-terminal domain of the cysteine enzyme, it may modulate the capacity of the N-terminal domain for amino acid activation and tRNA aminoacylation through a domain-domain interaction.  相似文献   

15.
BACKGROUND: We have isolated a series of temperature-sensitive mutants for cell-proliferation from the BHK21 cell line derived from the golden hamster (Nishimoto & Basilico 1978; Nishimoto et al. 1982). Using these mutants as a recipient of DNA-mediated gene transfer, we have been cloning human genes which complement these ts mutants. RESULTS: Cultures of tsBN269 cells, a temperature-sensitive mutant of the BHK21 cell line, underwent apoptosis at 39.5 degrees C, a nonpermissive temperature. The gene complementing the tsBN269 cells was cloned and found to encode lysyl-tRNA synthetase. Indeed, tsBN269 cells were found to have a single cytosine to a thymine point mutation at the first nucleotide of codon 542 in hamster lysyl-tRNA synthetases. Due to this mutation, the activity of lysyl-tRNA synthetase was reduced--even at 33.5 degrees C, a permissive temperature. Consistent with these findings, while supplementation with lysine permitted tsBN269 cells to grow at a nonpermissive temperature, the deprivation of lysine caused apoptosis in tsBN269 cells, even at 33.5 degrees C. Cycloheximide inhibited the apoptosis caused by lysine starvation at 33.5 degrees C, but not at 39.5 degrees C. We also found that another hamster temperature-sensitive mutant, tsBN250, which is defective in histidyl-tRNA synthetase, entered apoptosis with the deprivation of histidine. CONCLUSION: Our data suggested that the defect in aminoacyl-tRNA synthetase turned on the cascade of apoptosis that was already present in the cells.  相似文献   

16.
17.
18.
Structure/function relationships accounting for specific tRNA charging by class II aspartyl-tRNA synthetases from Saccharomyces cerevisiae, Escherichia coli and Thermus thermophilus are reviewed. Effects directly linked to tRNA features are emphasized and aspects about synthetase contribution in expression of tRNA(Asp) identity are also covered. Major identity nucleotides conferring aspartate specificity to yeast, E coli and T thermophilus tRNAs comprise G34, U35, C36, C38 and G73, a set of nucleotides conserved in tRNA(Asp) molecules of other biological origin. Aspartate specificity can be enhanced by negative discrimination preventing, eg mischarging of native yeast tRNA(Asp by yeast arginyl-tRNA synthetase. In the yeast system crystallography shows that identity nucleotides are in contact with identity amino acids located in the catalytic and anticodon binding domains of the synthetase. Specificity of RNA/protein interaction involves a conformational change of the tRNA that optimizes the H-bonding potential of the identity signals on both partners of the complex. Mutation of identity nucleotides leads to decreased aspartylation efficiencies accompanied by a loss of specific H-bonds and an altered adaptation of tRNA on the synthetase. Species-specific characteristics of aspartate systems are the number, location and nature of minor identity signals. These features and the structural variations in aspartate tRNAs and synthetases are correlated with mechanistic differences in the aminoacylation reactions catalyzed by the various aspartyl-tRNA synthetases. The reality of the aspartate identity set is verified by its functional expression in a variety of RNA frameworks. Inversely a number of identities can be expressed within a tRNA(Asp) framework. From this emerged the concept of the RNA structural frameworks underlying expression of identities which is illustrated with data obtained with engineered tRNAs. Efficient aspartylation of minihelices is explained by the primordial role of G73. From this and other considerations it is suggested that aspartate identity appeared early in the history of tRNA aminoacylation systems.  相似文献   

19.
Interactions of specific amino acid residues of the carboxyl-terminal domain of MetRS with the CAU anticodon of tRNAMet assure accurate and efficient aminoacylation. The substitution of one such residue, Trp461 by Phe, impairs the binding of cognate tRNA, but enhances the binding of noncognate tRNAs, particularly those containing G at the wobble position. However, the enhanced binding of noncognate tRNAs is not accompanied by the increased aminoacylation of these tRNAs. A genetic screening procedure was designed to isolate methionyl-tRNA synthetase mutants which were able to aminoacylate a GGU (threonine) anticodon derivative of tRNAfMet. One such mutant, obtained from W461F MetRS, had an Ile29 to Thr substitution in helix A located in the amino-terminal dinucleotide-fold domain that forms the site for amino acid activation. Analysis of the catalytic properties of the I29T/W461F enzyme indicates that the mutation in helix A of the dinucleotide-fold domain affects kcat for aminoacylation of tRNAs having a GGU threonine anticodon. Interactions with cognate tRNAfMet (CAU), as well as with methionine and ATP were not affected by the Ile29 to Thr substitution. We conclude that the I29T substitution leads to a slight adjustment of the alignment of the CCA stem of noncognate tRNAs (GGU) in the catalytic domain of the enzyme, reflected in the increase in kcat, which also allows mischarging in vivo. A function of Ile29 is therefore to minimize the mischarging of tRNAThr (GGU) by methionyl-tRNA synthetase. The methods described here provide useful tools for examining the mechanisms of tRNA selection by aminoacyl-tRNA synthetases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号