共查询到20条相似文献,搜索用时 15 毫秒
1.
The design and evaluation of a prototype fiber-based lidar system for autonomous measurement of atmospheric water vapor are presented. The system components are described, along with current limitations and options for improvement. Atmospheric measurements show good agreement with modeled signal returns from 400 to 1000 m but are limited below 400 m as a result of errors in signal processing caused by violation of the assumptions used in the derivation of the differential absorption lidar equation. 相似文献
2.
The saturation spectrum of the P(84) 5-5 transition of 127I2 at 657.483 nm is obtained with the third-harmonic demodulation method using an external cavity diode laser. The laser frequency is modulated by modulating the diode current instead of modulating the cavity length with a piezoelectric transducer (PZT). Current modulation allows a modulation frequency that is higher than PZT modulation. The signal-to-noise ratio of 1000 is better than previous results presented in the literature. The laser is frequency stabilized to the hyperfine component o of the P(84) 5-5 transition with a frequency stability of better than 10 kHz (2.2 x 10(-11) relative stability). 相似文献
3.
Koch GJ Beyon JY Gibert F Barnes BW Ismail S Petros M Petzar PJ Yu J Modlin EA Davis KJ Singh UN 《Applied optics》2008,47(7):944-956
A 2 microm wavelength, 90 mJ, 5 Hz pulsed Ho laser is described with wavelength control to precisely tune and lock the wavelength at a desired offset up to 2.9 GHz from the center of a CO(2) absorption line. Once detuned from the line center the laser wavelength is actively locked to keep the wavelength within 1.9 MHz standard deviation about the setpoint. This wavelength control allows optimization of the optical depth for a differential absorption lidar (DIAL) measuring atmospheric CO(2) concentrations. The laser transmitter has been coupled with a coherent heterodyne receiver for measurements of CO(2) concentration using aerosol backscatter; wind and aerosols are also measured with the same lidar and provide useful additional information on atmospheric structure. Range-resolved CO(2) measurements were made with <2.4% standard deviation using 500 m range bins and 6.7 min? (1000 pulse pairs) integration time. Measurement of a horizontal column showed a precision of the CO(2) concentration to <0.7% standard deviation using a 30 min? (4500 pulse pairs) integration time, and comparison with a collocated in situ sensor showed the DIAL to measure the same trend of a diurnal variation and to detect shorter time scale CO(2) perturbations. For vertical column measurements the lidar was setup at the WLEF tall tower site in Wisconsin to provide meteorological profiles and to compare the DIAL measurements with the in situ sensors distributed on the tower up to 396 m height. Assuming the DIAL column measurement extending from 153 m altitude to 1353 m altitude should agree with the tower in situ sensor at 396 m altitude, there was a 7.9 ppm rms difference between the DIAL and the in situ sensor using a 30 min? rolling average on the DIAL measurement. 相似文献
4.
5.
A sum-frequency-generation system for differential absorption lidar measurement of atmospheric nitrogen dioxide in the lower troposphere was developed. The system uses a combination of a pair of KD*P crystals and a tunable dye laser with LDS 765 dye pumped by the second harmonic of a Nd:YAG laser to generate lambdaon and lambdaoff alternatively. Compared with the conventional system that uses Coumarin 445 dye pumped by the third harmonic, the output energy and long-term stability were improved. By use of this system, atmospheric NO2 concentrations of approximately 10-50 ppb were measured, with an instrumental error of approximately 7 ppb. 相似文献
6.
Nyholm K. Merimaa M. Ahola T. Lassila A. 《IEEE transactions on instrumentation and measurement》2003,52(2):284-287
A compact frequency standard was constructed by stabilizing the frequency of a diode-pumped Nd:YAG laser to the Doppler-free spectrum of iodine at 532 nm. The performance of the laser and the stability and repeatability of the stabilization scheme were investigated. The dependence of the laser frequency on such parameters as pressure of the iodine cell, modulation amplitude, and pressure were also studied. The results show that by using standard third-harmonic locking technique stability and repeatability comparable to more elaborate iodine-stabilized Nd:YAG laser systems can be achieved in a portable, and relatively simple and inexpensive, setup. 相似文献
7.
We describe the design of a small Rayleigh scattering lidar for launch on a sounding rocket as well as the first, to our knowledge, in situ measurements of neutral number density performed with a rocketborne lidar in the mesosphere. The aim of the experiment is to study the dynamics of the neutral atmosphere with emphasis on turbulent structures and gravity waves. The altitude resolution of the density profile is better than 10 m. The uncertainty is 0.3% below 55 km and better than 1% to an altitude of 65 km. The lidar technique meets the requirement of measurement of total molecular density outside the shock front surrounding the supersonic payload, which is necessary for precision measurements of neutral atmospheric density. We have compared different component technologies and design approaches and show performance calculations for two electro-optical systems. The first system has laser and detector components that were available in 1993, the second has new solutions that became available in 1995. The second system has a signal-to-noise ratio that is five times higher than the first and employs a pulsed high-power laser diode array as the transmitter and a large-area avalanche photodiode as the receiver. 相似文献
8.
Elsayed KA DeYoung RJ Petway LB Edwards WC Barnes JC Elsayed-Ali HE 《Applied optics》2003,42(33):6650-6660
An all solid-state Ti:sapphire laser differential absorption lidar transmitter was developed. This all-solid-state laser provides a compact, robust, and highly reliable laser transmitter for potential application in differential absorption lidar measurements of atmospheric ozone. Two compact, high-energy-pulsed, and injection-seeded Ti:sapphire lasers operating at a pulse repetition frequency of 30 Hz and wavelengths of 867 and 900 nm, with M2 of 1.3, have been experimentally demonstrated and their properties compared with model results. The output pulse energy was 115 mJ at 867 nm and 105 mJ at 900 nm, with a slope efficiency of 40% and 32%, respectively. At these energies, the beam quality was good enough so that we were able to achieve 30 mJ of ultraviolet laser output at 289 and 300 nm after frequency tripling with two lithium triborate nonlinear crystals. 相似文献
9.
提出了一种新的探测对流层低层大气温度的转动拉曼激光雷达方法,通过测量N2和O2的后向散射的纯转动拉曼谱的强度,计算它们的比值来确定大气温度的垂直分布,并对其性能进行了数值模拟。转动拉曼激光雷达的光源是一个调Q的Nd:YAG激光器,经扩束器后输出能量200mJ;采用双光栅单色仪提取所需要的氮气和氧气的转动拉曼谱;接收机采用光电倍增管和双通道光子计数器,量子效率是10%(48000个脉冲累加)。夜晚它对近地面10.2km高度内的探测信噪比在10:1以上,白天它对近地面3.6km高度内的探测信噪比在10:1以上,计算的温度与模拟用的温度真值阔线相差约0.3K。 相似文献
10.
D. S. Kim W. C. Choi G. W. Moon K. Y. Jang T. G. Kim Y. M. Sung 《Journal of Materials Science》2006,41(22):7319-7323
Defect engineering is carried out to determine optimum growth conditions for highly reliable high-power 780 nm AlGaAs laser diodes (LDs) using deep level transient spectroscopy (DLTS). The DLTS results reveal that the defect density of the Al0.48Ga0.52As cladding layer depended heavily on growth temperature and AsH3 flow but that of the Al0.1Ga0.9As active layer depended mostly on the growth rates of the active layer. As a result of layer optimization at growth condition by DLTS, a record high output power of 250 mW was obtained at an operating current as low as 129.6 mA under room temperature continuous wave (CW) operation. 相似文献
11.
A study on the feasibility of using pseudorandom modulation continuous-wave (PMCW) Na lidar for mesopause-region temperature and horizontal wind measurements is presented with a number of specific geometries and associated beam-telescope overlap functions, suitable for ground-based and airborne deployments. The performance of these deployment scenarios is analyzed by scaling from the received signal and sky background and the measurement uncertainties in temperature and horizontal wind of the well-tested Colorado State University pulsed Na lidar. Using currently available high-power (~20 W) continuous-wave Na narrowband lasers, a compact PMCW bistatic Na lidar system can indeed be deployed to simultaneously measure mesopause-region temperature and horizontal winds on a 24 h continuous basis, weather permitting. 相似文献
12.
Ben-David A 《Applied optics》1999,38(12):2616-2624
The volume backscattering coefficients of atmospheric aerosol were measured with a tunable CO2 lidar system at various wavelengths in Utah (a desert environment) along a horizontal path a few meters above the ground. In deducing the aerosol backscattering, a deconvolution (to remove the smearing effect of the long CO2 lidar pulse and the lidar limited bandwidth) and a constrained-slope method were employed. The spectral shape beta(lambda) was similar for all the 13 measurements during a 3-day period. A mean aerosol backscattering-wavelength dependence beta(lambda) was computed from the measurements and used to estimate the error Delta(CL) (concentration-path-length product) in differential-absorption lidar measurements for various gases caused by the systematic aerosol differential backscattering and the error that is due to fluctuations in the aerosol backscattering. The water-vapor concentration-path-length product CL and the average concentration C = /L for a path length L computed from the range-resolved lidar measurements is consistently in good agreement with the water-vapor concentration measured by a meteorological station. However, I was unable to deduce, reliably, the range-resolved water-vapor concentration C(r), which is the derivative of the range-dependent product CL, because of the effect of residual noise caused mainly by errors in the deconvolved lidar measurements. 相似文献
13.
Higdon NS Browell EV Ponsardin P Grossmann BE Butler CF Chyba TH Mayo MN Allen RJ Heuser AW Grant WB Ismail S Mayor SD Carter AF 《Applied optics》1994,33(27):6422-6438
An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H(2)O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and > 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H(2)O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H(2)O absorption-line parameters were perfo med to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H(2)O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H(2)O radiosondes. The H(2)O distributions measured with the DIAL system differed by ≤ 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions. 相似文献
14.
A new process for stabilizing the frequency of commercially available 543-nm He-Ne lasers is described. The stabilization method is based on anomalous dispersion of the gain medium. A total of four green lasers have been stabilized-two at the National Institute of Standards and Technology and two at the Institute of Scientific Instruments of the Czech Academy of Sciences-making it possible to study frequency variations of the lasers relative to each other. We have also stabilized a 633-nm laser by the use of the same method used for 543 nm. 相似文献
15.
The position of the emitting region of a laser diode depends on the working current. This phenomenon, as well as the polarization of radiation, may influence the accuracy of linear measurements using such lasers. 相似文献
16.
基于参量振荡探测对流层CO2的差分吸收雷达 总被引:3,自引:1,他引:2
设计了一种新颖探测对流层二氧化碳气体的 1572nm 差分吸收雷达,它的发射系统基于脉冲的种子注入 KTP 参量振荡器(OPO)。OPO 由 1064nm Nd:YAG 多模激光泵浦,转换效率 10%,重复频率 20Hz,OPO 的腔长由 PZT 单元和二氧化碳多通道吸收池精确控制,种子注入时,它可以产生单模窄带的信号光脉冲输出, 对应的空闲光输出仍然是多模。窄带 on 光源(线宽小于600MHz)对应于二氧化碳光谱的强吸收线,宽带 off 光源(150GHz)对应于光谱的弱吸收线。on 和off 双波长工作是通过对种子光的 10Hz 开关来得到的。雷达接收系统的核心是近红外光电倍增管和光子计数器,光电倍增管制冷到-60℃以降低其噪声。实验表明,该雷达的信噪比在 6km 以内大于 10 :1(10 分钟 6000 个脉冲累加)。 相似文献
17.
A single-laser Raman differential absorption lidar (DIAL) for ozone measurements in clouds is proposed. An injection-locked XeCl excimer laser serves as the radiation source. The ozone molecule number density is calculated from the differential absorption of the anti-Stokes rotational Raman return signals from molecular nitrogen and oxygen as the on-resonance wavelength and the vibrational-rotational Raman backscattering from molecular nitrogen or oxygen as the off-resonance wavelength. Model calculations show that the main advantage of the new rotational vibrational-rotational (RVR) Raman DIAL over conventional Raman DIAL is a 70-85% reduction in the wavelength-dependent effects of cloud-particle scattering on the measured ozone concentration; furthermore the complexity of the apparatus is reduced substantially. We describe a RVR Raman DIAL setup that uses a narrow-band interference-filter polychromator as the lidar receiver. Single-laser ozone measurements in the troposphere and lower stratosphere are presented, and it is shown that on further improvement of the receiver performance, ozone measurements in clouds are attainable with the filter-polychromator approach. 相似文献
18.
A unique ultranarrowband fiber-optic phase-shifted Fabry-Perot Bragg grating filter for atmospheric water vapor lidar measurements was designed, fabricated, and successfully tested. Customized optical fiber Bragg gratings were fabricated so that two transmission filter peaks occurred: one (89% transmission, 8 pm FWHM) near the 946-nm water vapor absorption line and the other peak (80% transmission, 4 pm FWHM) at a region of no absorption. Both transmission peaks were within a 2.66-nm stop band. Demonstration of tension tuning to the 946.0003-nm water vapor line was achieved, and the performance characterization of custom-made optical fiber Bragg grating filters are presented. These measurements are successfully compared to theoretical calculations using a piecewise-matrix form of the coupled-mode equations. 相似文献
19.
20.
Airborne CO(2) coherent lidar for measurements of atmospheric aerosol and cloud backscatter 总被引:1,自引:0,他引:1
An airborne CO(2) coherent lidar has been developed and flown on over 30 flights of the NASA DC-8 research aircraft to obtain aerosol and cloud backscatter and extinction data at a wavelength near 9μm. Designed to operate in either zenith- or nadir-directed modes, the lidar can be used to measure vertical profiles of backscatter throughout the vertical extent of the troposphere and the lower stratosphere. Backscatter measurements in absolute units are obtained through a hard-target calibration methodology. The use of coherent detection results in high sensitivity and narrow field of view, the latter property greatly reducing multiple-scattering effects. Aerosol backscatter profile intercomparisons with other airborne and ground-based CO(2) lidars were conducted during instrument checkout flights over the NASA Ames Research Center before extended depolyment over the Pacific Ocean. Selected results from data taken during the flights over the Pacific Ocean are presented, emphasizing intercom arisons with backscatter profile data obtained at 1.06 μm with a NASA Goddard Space Flight Center Nd:YAG lidar on the same flights. 相似文献