首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Off-axis holograms recorded with a CCD camera are numerically reconstructed with a calculation of scalar diffraction in the Fresnel approximation. We show that the zero order of diffraction and the twin image can be digitally eliminated by means of filtering their associated spatial frequencies in the computed Fourier transform of the hologram. We show that this operation enhances the contrast of the reconstructed images and reduces the noise produced by parasitic reflections reaching the hologram plane with an incidence angle other than that of the object wave.  相似文献   

2.
Tsang P  Cheung KW  Poon TC 《Applied optics》2011,50(34):H42-H49
We propose a method for compressing a digital color Fresnel hologram based on vector quantization (VQ). The complex color hologram is first separated into three complex holograms, each representing one of the primary colors. Subsequently, each hologram is converted into what we call a real Fresnel hologram and compressed with VQ based on a universal codebook. Experimental evaluation reveals that our scheme is capable of attaining a compression ratio of over 1600 times and still preserving acceptable visual quality on the reconstructed images. Moreover, the decoding process is free from computation and highly resistant to noise contamination on the compressed data.  相似文献   

3.
We present an optical imaging system and mathematical algorithms for three-dimensional sensing and identification of stem cells. Data acquisition of stem cells is based on holographic microscopy in the Fresnel domain by illuminating the cells with a laser. In this technique, the holograms of stem cells are optically recorded with an image sensor array interfaced with a computer and three-dimensional images of the stem cells are reconstructed from the Gabor-filtered digital holograms. The Gabor wavelet transformation for feature extraction of the digital hologram is performed to improve the process of identification. The inverse Fresnel transformation of the Gabor-filtered digital hologram is performed to reconstruct the multi-scale three-dimensional images of the stem cells at different depths along the longitudinal direction. For recognition and classification of stem cells, a statistical approach using an empirical cumulative density function is introduced. The experiments indicate that the proposed system can be potentially useful for recognizing and classifying stem cells. To the best of our knowledge, this is the first report on using three-dimensional holographic microscopy for automated identification of stem cells.  相似文献   

4.
Effects of quantization in phase-shifting digital holography   总被引:1,自引:0,他引:1  
Mills GA  Yamaguchi I 《Applied optics》2005,44(7):1216-1225
We discuss quantization effects of hologram recording on the quality of reconstructed images in phase-shifting digital holography. We vary bit depths of phase-shifted holograms in both numerical simulation and experiments and then derived the complex amplitude, which is subjected to Fresnel transformation for the image reconstruction. The influence of bit-depth limitation in quantization has been demonstrated in a numerical simulation for spot-array patterns with linearly varying intensities and a continuous intensity object. The objects are provided with uniform and random phase modulation. In experiments, digital holograms are originally recorded at 8 bits and the bit depths are changed to deliver holograms at bit depths of 1 to 8 bits for the image reconstruction. The quality of the reconstructed images has been evaluated for the different quantization levels.  相似文献   

5.
解文博  王庆 《包装工程》2023,44(9):282-288
目的 对全息图进行加网处理,实现计算全息图的二值化,将计算全息图应用于印刷领域。方法 本文设计计算全息图进行调频加网的整体方案,讨论不同的加网算法对计算全息再现图像的质量影响。首先,对3幅不同类型的灰度图片进行计算全息编码得到全息图;然后利用误差扩散算法和抖动算法对全息图进行调频加网获得二值化全息图;之后通过光场重建得到全息再现图像。结果 对全息再现图像进行峰值信噪比和结构相似性数据比较发现,误差扩散算法更适用于计算全息二值化处理,抖动加网使计算全息图产生周期性图案,导致再现全息图产生混频现象,全息再现图像的质量下降。结论 加网导致全息图再现质量下降,误差扩散算法可以得到较好的再现像,适用于全息图的二值化处理;与此同时,抖动算法会产生混频现象,因此抖动算法并不适用于全息图二值化处理。  相似文献   

6.
Since a general flat hologram has a limited viewable area, we usually cannot see the other side of a reconstructed object. There are some holograms that can solve this problem. A cylindrical hologram is well known to be viewable in 360 deg. Most cylindrical holograms are optical holograms, but there are few reports of computer-generated cylindrical holograms. The lack of computer-generated cylindrical holograms is because the spatial resolution of output devices is not great enough; therefore, we have to make a large hologram or use a small object to fulfill the sampling theorem. In addition, in calculating the large fringe, the calculation amount increases in proportion to the hologram size. Therefore, we propose what we believe to be a new calculation method for fast calculation. Then, we print these fringes with our prototype fringe printer. As a result, we obtain a good reconstructed image from a computer-generated cylindrical hologram.  相似文献   

7.
Schnars U  Jüptner WP 《Applied optics》1994,33(20):4373-4377
The fundamentals of digital recording and mathematical reconstruction of Fresnel holograms are described. The object is recorded in two different states, and the holograms are stored electronically with a charge-coupled-device detector. In the process of reconstruction the digitally sampled holograms are applied to the different coherent optical methods as hologram interferometry and shearography. If the holograms are superimposed and reconstructed jointly, a holographic interferogram results. If a shearing is introduced in the reconstruction process, a shearogram results. This means that the evaluation technique, e.g., hologram interferometry or shearography, can be influenced by numerical methods.  相似文献   

8.
We present a theoretical framework for recording and reconstructing incoherent correlation holograms of real-existing three-dimensional scenes observed from multiple viewpoints. This framework is demonstrated by generating and reconstructing a modified Fresnel hologram as well as a new correlation hologram called a protected correlation hologram. The reconstructed scene obtained from the protected correlation hologram has a significantly improved transverse resolution for the far objects in the scene compared to the modified Fresnel hologram. Additionally, the three-dimensional information encoded into the protected correlation hologram is scrambled by a secretive point spread function and thus the hologram can be used for encrypting the observed scene. The proposed holography methods are demonstrated by both simulations and experiments.  相似文献   

9.
Liu JP  Hsieh WY  Poon TC  Tsang P 《Applied optics》2011,50(34):H128-H135
We propose a novel optical method to display a complex Fresnel hologram using a single spatial light modulator (SLM). The method consists of a standard coherent image processing system with a sinusoidal grating at the Fourier plane. Two or three position-shifted amplitude holograms displayed at the input plane of the processing system can be coupled via the grating and will be precisely overlapped at the system's output plane. As a result, we can synthesize a complex hologram that is free of the twin image and the zero-order light using a single SLM. Because the twin image is not removed via filtering, the full bandwidth of the SLM can be utilized for displaying on-axis holograms. In addition, the degree of freedom of the synthesized complex hologram display can be extended by involving more than three amplitude holograms.  相似文献   

10.
Abstract

In this paper we describe a digital double-pulsed holographic system. Two separate holograms of an object under test are recorded within a few microseconds using a charge-coupled device camera and stored in a frame grabber. The holograms are digitally reconstructed using a computer, by simulation of the Fresnel diffraction of the hologram illuminated by the reference wave. The phases of the two reconstructed wave fields are calculated from the complex amplitude and the deformation is obtained from the phase difference. Experimental results are presented.  相似文献   

11.
Abookasis D  Rosen J 《Applied optics》2006,45(25):6533-6538
We describe various techniques to synthesize three types of computer-generated hologram (CGH): the Fresnel-Fourier CGH, the Fresnel CGH, and the image CGH. These holograms are synthesized by fusing multiple perspective views of a computer-generated scene. An initial hologram is generated in the computer as a Fourier hologram. Then it can be converted to either a Fresnel or an image hologram by computing the desired wave propagation and imitating an interference process of optical holography. By illuminating the CGH, a 3D image of the objects is constructed. Computer simulations and experimental results underline the performance of the suggested techniques.  相似文献   

12.
Conventional and digital holographies are proving to be increasingly important for studies of marine zooplankton and other underwater biological applications. This paper reports on the use of a subsea digital holographic camera (eHoloCam) for the analysis and identification of marine organisms and other subsea particles. Unlike recording on a photographic film, a digital hologram (e-hologram) is recorded on an electronic sensor and reconstructed numerically in a computer by simulating the propagation of the optical field in space. By comparison with other imaging techniques, an e-hologram has several advantages such as three-dimensional spatial reconstruction, non-intrusive and non-destructive interrogation of the recording sampling volume and the ability to record holographic videos. The basis of much work in optics lies in Maxwell's electromagnetic theory and holography is no exception: we report here on two of the numerical reconstruction algorithms we have used to reconstruct holograms obtained using eHoloCam and how their starting point lies in Maxwell's equations. Derivation of the angular spectrum algorithm for plane waves is provided as an exact method for the in-line numerical reconstruction of digital holograms. The Fresnel numerical reconstruction algorithm is derived from the angular spectrum method. In-line holograms are numerically processed before and after reconstruction to remove periodic noise from captured images and to increase image contrast. The ability of the Fresnel integration reconstruction algorithm to extend the reconstructed volume beyond the recording sensor dimensions is also shown with a 50% extension of the reconstruction area. Finally, we present some images obtained from recent deployments of eHoloCam in the North Sea and Faeroes Channel.  相似文献   

13.
When a digital hologram is reconstructed, only points located at the reconstruction distance are in focus. We have developed a novel technique for creating an in-focus image of the macroscopic objects encoded in a digital hologram. This extended focused image is created by combining numerical reconstructions with depth information extracted by using our depth-from-focus algorithm. To our knowledge, this is the first technique that creates extended focused images of digital holograms encoding macroscopic objects. We present results for digital holograms containing low- and high-contrast macroscopic objects.  相似文献   

14.
In this paper we propose an alternative technique for producing digital Fresnel holograms. The evaluation of a diffraction pattern in a wide region is implemented in such a way as to avoid redundant calculations and preserve the precision. Because of the symmetry of the kernel, the complex amplitude is calculated at four points in the registration plane simultaneously. This algorithm decreases the required CPU time 4 times with respect to direct calculation. The digital Fresnel hologram is numerically and optically reconstructed, and some qualitative comparisons are made.  相似文献   

15.
Digital holography, which consists of both acquiring the hologram image in a digital camera and numerically reconstructing the information, offers new and faster ways to make the most of a hologram. We describe a new method to determine the rough size of particles in an in-line hologram. This method relies on a property that is specific to interference patterns in Fresnel holograms: Self-correlation of a hologram provides access to size information. The proposed method is both simple and fast and gives results with acceptable precision. It suppresses all the problems related to the numerical depth of focus when large depth volumes are analyzed.  相似文献   

16.
《Journal of Modern Optics》2013,60(5):347-350
When generating wavefronts by synthetic holograms several sources of error have to be considered. In this paper two sources are analysed. The first is the binarization of the hologram structure; a quantitative estimate is given for two typical cases. The second is distortion caused by the graphic device applied to generate the hologram diagram. Several techniques in recording and compensating for these errors are described. It is shown that a dual synthetic hologram exhibits special advantages. A compromise has to be made in reducing both of these errors. Reducing the errors caused by binarization increases errors caused by distortions in the hologram diagram and vice versa.  相似文献   

17.
Funamizu H  Aizu Y 《Applied optics》2011,50(31):6011-6018
We propose a method for an estimation of wavelength difference using scale adjustment in two-wavelength digital holographic interferometry. To estimate wavelength difference, two holograms recorded with different wavelengths are reconstructed on the basis of the Fresnel diffraction integral, and pixel sizes in the reconstruction plane, which depend on the wavelength in recording hologram, are analyzed. In the analysis, a zero-padding method and an intensity correlation function are used to adjust pixel sizes in the reconstruction plane and then obtain a wavelength difference given by a difference between the pixel sizes. Theoretical predictions and experimental results are shown to indicate the usefulness of the proposed method in this paper.  相似文献   

18.
Shaked NT  Rosen J 《Applied optics》2008,47(19):D21-D27
An efficient method for obtaining modified Fresnel holograms of real existing three-dimensional (3-D) scenes illuminated by incoherent white light is presented. To calculate the hologram, the method uses multiple-viewpoint projections of the 3-D scene. However, contrary to other similar methods, this one is able to calculate the Fresnel hologram of the 3-D scene directly rather than calculating a Fourier hologram first. This significantly decreases the amount of calculations needed to obtain the hologram and also reduces the reconstruction errors. The proposed method is first mathematically introduced and then demonstrated by both simulations and experiments.  相似文献   

19.
Abstract:  Phase-shifting digital holography is a new method for measuring the displacement distribution on the surface of an object. The authors previously proposed a windowed phase-shifting digital holographic interferometry (windowed PSDHI). This method provides accurate displacement distributions by decreasing the effect of speckle patterns. In this study, the method is extended to analyse three-dimensional displacement components in a microscope. Three object laser beams in the optical system are used. Four phase-shifted holograms are recorded for each object laser beam. The complex amplitude of each reconstructed light at the object is calculated by the Fresnel diffraction integral of the complex amplitude of the hologram. The reconstructed distance is obtained at the point with the maximum of the standard deviation of the intensities of the object reconstructed with changing the reconstruction distance. The three phase-difference values between before and after deformation provide the three-dimensional displacement components. Theoretical treatment and experimental results of three-dimensional displacement measurement using this method are shown.  相似文献   

20.
Li Y  Abookasis D  Rosen J 《Applied optics》2001,40(17):2864-2870
We propose a method of synthesizing computer-generated holograms of real-life three-dimensional (3-D) objects. An ordinary digital camera illuminated by incoherent white light records several projections of the 3-D object from different points of view. The recorded data are numerically processed to yield a two-dimensional complex function, which is then encoded as a computer-generated hologram. When this hologram is illuminated by a plane wave, a 3-D real image of the object is reconstructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号