首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A beta-glucosidase (EC 3.2.1.21) was purified as an electrophoretically homogeneous protein from a solid culture of Aspergillus sojae. The molecular mass of the purified enzyme was estimated to be 250 kDa by gel filtration chromatography and 118 kDa by sodium dodecyl sulfate--polyacrylamide gel electrophoresis (SDS-PAGE). The isoelectric point of the enzyme was 3.80. The maximum velocity of rho-nitrophenyl beta-d-glucopyranoside degradation by the beta-glucosidase was attained at 60 degrees C and at pH 5.0. The purified enzyme was stable from pH 6.0 to 8.0, and up to 50 degrees C. The activity of the enzyme was significantly inhibited by Hg2+ and Cu2+, and stimulated by Mn2+ and Fe3+. The purified enzyme hydrolyzed beta-D-xylopyranosides as well as beta-D-glucopyranosides; the Km and Vmax values on rho-nitrophenyl beta-D-glucopyranoside were 0.14 mM and 16.7 micromol/min/mg protein, and on rho-nitrophenyl beta-D-xylopyranoside 0.51 mM and 12.2 micromol/min/mg protein, respectively.  相似文献   

2.
The ammonia-oxidizing chemoautotrophic Nitrosomonas sp. strain K1 exhibited marked ribulose-1,5-bisphosphate carboxylase (RubisCO) activity. The RubisCO [EC 4.1.1.39] was purified as an electrophoretically homogeneous protein. The molecular mass of the enzyme was estimated to be about 460 kDa by gel filtration, and it consists of two subunits [large (L): 52.2 kDa; small (S): 13.3 kDa] as demonstrated by SDS-PAGE. This confirmed that the enzyme has an L(8)S(8) structure. The K(m) values of the enzyme for RuBP, NaHCO3, and Mg2+ were estimated to be 0.112, 0.415, and 1.063 mM, respectively. The optimum pH and temperature for its activity were approximately 7.0 and 45 degrees C. The enzyme was stable up to 45 degrees C and in a pH range from 7.0-9.0 (4 degrees C, 48 h). The enzyme activity was inhibited by Cu2+, Hg2+, N-ethylmaleimide, p-chloromercuribenzoate, and SDS (0.1 mM). The activity was also inhibited by ammonium sulfate at high concentrations (38-303 mM) but the stability of the enzyme showed no inhibition at the same ammonium sulfate concentrations. The N-terminal amino acid sequences of the large and small subunits are AIKTYQAGVKEYRQTYW QPDYVPL and AIQAYHLTKKYETFSYLPQM, respectively.  相似文献   

3.
Purification and properties of a phytase from Candida krusei WZ-001   总被引:1,自引:0,他引:1  
A phytase from Candida krusei WZ-001 isolated from soil was purified to electrophoretic homogeneity by ion-exchange chromatography, hydrophobic interaction chromatography, and gel filtration. The phytase is composed of two different subunits with molecular masses of 116 kDa and 31 kDa on SDS-PAGE (or 120 kDa and 30 kDa on gel chromatography), with the larger subunit having a glycosylation rate of around 35%. The phytase has an optimum pH of 4.6, an optimum temperature of 40 degrees C and a pI value of 5.5. The phytase activity was stimulated by 2-mercapto-ethanol and dithiothreitol (DTT), and inhibited by Zn2+, Mg2+, iodoacetate, pI value of 5.5. The phytase activity was stimulated by 2-mercapto-ethanol ethanol and dithiothreitol (DTT), and inhibited by Zn2+, Mg2+, iodoacetate, p-chroloromercuribenzoate (pCMB) and phenylmethylsulfonyl fluoride (PMSF). The phytase displayed a broad substrate specificity and the K(m) for phytate was 0.03 mM. Phytate was sequentially hydrolyzed by the phytase. Furthermore, 1D and 2D NMR analyses and bioassay of myoinositol indicated that the end hydrolysis product of phytate was myoinositol 2-monophosphate.  相似文献   

4.
A novel beta-agarase (EC 3.2.1.81) was purified from an agar-degrading alkalophilic bacterium, Alteromonas sp. E-1 isolated from the soil. This enzyme was obtained from a cell-free extract after sonication and purified 40.9-fold through treatment with streptomycin, ammonium sulfate fractionation and successive chromatography on anion-exchange and gel filtration columns. The molecular weight was estimated to be 82 kDa by SDS-polyacrylamide gel electrophoresis and 180 kDa by Superdex 200 gel filtration. The enzyme was inhibited by Mn2+, Cu2+, Fe2+, Zn2+ and Hg2+, and activated by K+, Na+ and EDTA, and its optimum pH and temperature for agarose degradation were 7.5 and 40 degrees C, respectively. This beta-agarase hydrolyzed agarose with rapid reduction of viscosity, and neoagarobiose [O-3,6-anhydro-alpha-L-galactopyranosyl(1-->3)-D-galactose] was detected from the early stage of the reaction. Neoagarobiose as the final product was selectively released from agarose, neoagarohexaose and neoagarotetraose by the reaction with this beta-agarase. This observation was different from that of other beta-agarases which produced mixtures of neoagarobiose and neoagarotetraose as the final hydrolysis products. The N-terminal amino acid sequence of this beta-agarase shows no homology to those of other beta-agarases that were so far reported.  相似文献   

5.
cis-Aconitic acid decarboxylase (CAD) was assumed to be a key enzyme in the production of itaconic acid by comparing the activity of CAD from Aspergillus terreus TN484-M1 with that of CAD from the low-itaconate yielding strain Aspergillus terreus CM85J. The constitutive CAD was purified to homogeneity from A. terreus TN484-M1 by ammonium sulfate fractionation, and column chromatography on DEAE-toyopearl, Butyl-toyopearl, and Sephacryl S200HR, and then characterized. A molecular mass of 55 kDa for the native enzyme was determined by SDS-PAGE. The enzymic activity was optimal at a pH of 6.2 and temperature of 45 degrees C. The K(m) value for cis-aconitic acid was determined as 2.45 mM (pH 6.2, 37 degrees C). The enzyme was completely inactivated by Hg+, Cu2+, Zn2+, p-chloromercuribenzoate, and 5,5'-dithio-bis(2-nitrobenzoate).  相似文献   

6.
A fungus producing high levels of phytase was isolated from air and identified as Cladosporium sp. The phytase production was stimulated by phytate in the medium used. The maximum production of phytase (108 U/ml) occurred in a medium containing 1.0 g of phytate per 100 ml. The phytase was purified to electrophoretic homogeneity by ion-exchange chromatography and gel filtration. Based on SDS-PAGE analysis, the molecular weight of the purified phytase was calculated to be approximately 32.6 kDa, and the narrow protein band indicated that this phytase is not glycosylated. The phytase has an optimum pH of 3.5, and an optimum temperature of 40 degrees C. The phytase activity was stimulated by 2-mercaptoethanol and dithiothreitol, and inhibited by Ba2+, Pb2+, iodoacetate, p-chloromercuribenzoate and phenylmethylsulfonyl fluoride. The phytase displayed high affinity for phytate and the Km was 15.2+/-3.1 microM. NMR analyses (1D and 2D) indicated that the end hydrolysis product of phytate was myo-inositol 1,2,5-triphosphate.  相似文献   

7.
N-Acetylglucosamine 6-phosphate deacetylase [EC 3.5.1.25] was purified and biochemically characterized from an extreme thermophile, Thermus caldophilus GK24. The optimum temperature and pH of the enzyme were 80 degrees C and 7.5, respectively. The enzyme is a tetramer composed of identical 45 kDa subunits. The N-terminal amino acid sequence of the purified enzyme was determined to be MSVDLKTLHRRHVLTP. It hydrolyzed GlcNAc-6-P, but not GlcNAc-1-P or chitin oligosaccharides. The deacetylase activity was completely inhibited by the addition of 1 mM Cu2+, but moderately activated by that of 1 mM Mn2+ and Co2+. Within 2 h of reaction, 2 mM GlcNAc-6-P was completely hydrolyzed to GlcN-6-P and acetate by the action of the deacetylase.  相似文献   

8.
An alkaline protease was purified to apparent homogeneity from culture supernatants of Bacillus sp. PS719, a novel alkaliphilic, thermophilic bacterium isolated from a thermal spring soil sample, by ammonium sulfate precipitation followed by DEAE-cellulose and alpha-casein agarose column chromatographies. The purified enzyme migrated as a single protein band of 42 kDa during both denaturing and nondenaturing gel electrophoresis, suggesting that it consists of a single polypeptide chain. Its isoelectric point was approximately 4.8. The protease exhibited maximum activity towards azocasein at pH 9.0 and at 75 degrees C. The enzyme activity was stimulated by Ca2+, but was inhibited in the presence of Fe2+ or Cu2+. The enzyme was stable in the pH range 8.0 to 10.0 and up to 80 degrees C in the absence of Ca2+. Since phenylmethylsulfonyl fluoride (PMSF) and 3,4-dichloroisocoumarin (DCI) in addition to N-alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK) completely inhibited the activity, this enzyme appears to be a trypsin-like serine protease. Among the various oligopeptidyl-p-nitroanilides tested, the protease showed a preference for cleavage at arginine residues on the carboxylic side of the scissile bond of the substrate, liberating p-nitroaniline from N-carbobenzoxy (CBZ)-L-arginine-p-nitroanilide with the K(m) and V(max) values of 0.6 mM and 1.0 micromol.min(-1).mg protein(-1), respectively.  相似文献   

9.
以荷叶离褶伞菌丝体为材料,利用DEAE-Sepharose F.F.色谱和SephadexG-100色谱技术,分离获得新的LMLLML。根据凝胶过滤色谱和SDS-PAGE电泳结果,确定LML是中性糖含量为10.36%、分子量约为48.2ku单亚基糖蛋白。凝血活性检测结果表明,LML对兔血红细胞具有凝聚活性,这种活性在LML浓度为500μg/mL、温度为2070℃、pH310的条件下稳定;其凝血活性可被葡萄糖(最小浓度为25mmol/L)和麦芽糖(最小浓度为12.5mmol/L)所抑制;当LML浓度≥250μg/mL时,其凝血活性不受Ca2+、Mg2+和Zn2+的影响。   相似文献   

10.
An alkaline serineprotease, capable of hydrolyzing Nalpha-benzoyl- dl arginine p-nitroanilide, was secreted by Fusarium oxysporum var. lini grown in the presence of gelatin as the sole nitrogen and carbon source. The protease was purified 65-fold to electrophoretic homogenity from the culture supernatant in a three-step procedure comprising QSepharose chromatography, affinity chromatography, and FPLC on a MonoQ column. SDS-PAGE analysis of the purified protein indicated an estimated molecular mass of 41 kDa. The protease had optimum activity at a reaction temperature of 45 degrees C and showed a rapid decrease of activity at 48 degrees C. The optimum pH was around 8.0. Characterization of the protease showed that Ca2+ and Mg2+ cations increased the activity, which was not inhibited by EDTA or 1,10-phenanthroline. The enzyme activity on Nalpha-benzoyl-DL arginine p-nitroanilide was inhibited by 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride, p-aminobenzamidine dihydrochloride, aprotinin, 3-4 dichloroisocoumarin, and N-tosyl-L-lysine chloromethyl ketone. The enzyme is also inhibited by substrate concentrations higher than 2.5 x 10(-4)M. The protease had a Michaelis-Menten constant of 0.16 mM and a V(max) of 0.60 mumol released product.min(-1).mg(-1) enzyme when assayed in a non-inhibiting substrate concentration. The activity on Nalpha-benzoyl- dl arginine p-nitroanilide was competitively inhibited by p-aminobenzamidine dihydrochoride. A K(i) value of 0.04 mM was obtained.  相似文献   

11.
以蓝圆鲹肝脏为对象,通过硫酸铵盐析、Q-Sepharose阴离子交换柱层析、Q-HP阴离子交换柱层析、Phenyl Fast Flow疏水柱层析和Superdex G75凝胶过滤柱层析技术分离纯化得到一种酯酶.该酶的回收率为0.69%,纯化倍数为1150倍.十二烷基硫酸钠-聚丙烯酰胺凝胶电泳与Superdex G75凝...  相似文献   

12.
枯草芽孢杆菌内切木聚糖酶的纯化与性质研究   总被引:5,自引:0,他引:5  
建立了一种快速、简便分离纯化木聚糖酶的方法。采用活性聚丙烯酰胺凝胶电泳和均质提取法相结合 ,从枯草芽孢杆菌 (Bacillussubtilis)固态培养基发酵产物中分离得到了 2种内切木聚糖酶 ,分别定义为xylⅠ和xylⅡ ,它们水解桦木木聚糖的主要产物有木二糖、木三糖和聚合度更高的木聚寡糖 ,没有木糖。SDS PAGE显示内切木聚糖酶xylⅡ为单肽链结构 ,分子质量为 98 8ku。内切木聚糖酶xylⅡ的酶反应最适温度为 5 0℃ ,酶反应的最适 pH为 7 0。Mn2 + 对xylⅡ酶反应具有促进作用 ,将酶活提高了 2 7倍 ,而Fe3+ 对该酶反应起完全抑制作用。  相似文献   

13.
为实现抗真菌性能的耐热新型几丁质酶在食品防腐及生物防治方面的应用,从产黄青霉Xch23中分离纯化几丁质酶(Chi-Pc76)并研究其应用特性。通过硫酸铵沉淀、DEAE-Cellulose A52离子交换层析和Sephadex G-100凝胶过滤层析纯化得到均一的Chi-Pc76。最终得到Chi-Pc76纯化倍数17.1 倍,回收率21.6%,比活力为584.8 U/mg。十二烷基硫酸钠-聚丙烯酰胺凝胶电泳测得Chi-Pc76分子质量61 kDa。纯化后的Chi-Pc76最佳反应条件为pH 6.0、温度55 ℃。Chi-Pc76在宽泛的pH 4.0~10.0之间稳定性强,其显著的热稳定性可达到70 ℃。Chi-Pc76对底物胶体几丁质具有高的底物特异性,对乙二醇几丁质、α-几丁质、β-几丁质有中等活性,而对其他受试底物无活性或痕量活性。以胶体几丁质为底物Km和Vmax值分别为0.25 mg/mL和20 μmol/(min·mg)。金属离子Ca2+、Ba2+、K+、Na+对酶有明显激活作用;十二烷基硫酸钠、吐温80、苯甲基磺酰氟和尿素对酶活力基本无影响,但Mn2+、Co2+、Fe2+、Ag+、Cu2+、Zn2+、Pb2+、Hg2+和β-巯基乙醇、二硫苏糖醇均对酶活力有抑制作用。Chi-Pc76对黑曲霉、黄曲霉、尖孢镰刀菌和橘青霉均有显著的抗真菌活性,对比文献为产黄青霉抗真菌几丁质酶。鉴于Chi-Pc76纯化简便、热稳定性好、宽广的pH值稳定性、高效降解几丁质和抗真菌等特点,产黄青霉Xch23几丁质酶在几丁质废料综合利用、生物转化药理活性产品、食品保鲜以及植物病原性真菌和昆虫幼虫生物防治等方面具有潜在价值。  相似文献   

14.
Cyclohexylamine oxidase (CHAO) from a cell extract of Brevibacterium grown on cyclohexylamine was purified 50.2-fold, to electrophoretic homogeneity, by serial chromatographies. The molecular mass of the native enzyme was estimated to be approximately 50 kDa by gel filtration and SDS-PAGE. The optimum pH was 7.4 and the stable pH range was 6.0 to 7.0. The enzyme was thermostable up to 30 degrees C. The enzyme was found to be highly specific for the deamination of alicyclic monoamines such as cyclopentylamine, cycloheptylamine, and N-methylcyclohexylamine and aliphatic monoamines, such as sec-butylamine. The apparent K(m) value for cyclohexylamine was 1.23 mM. The enzyme was inhibited by flavin enzyme inhibitors such as quinine and quinacrine. The N-terminal 27 amino acid residues were determined as Gly-Ser-Val-Thr-Pro-Asp-Pro-Asp-Val-Asp-Val-Ile-Ile-His-Gly-Ala-Gly-Ile-Ser-Gly-Ser-Ala-Ala-Ala-Lys-Ala-Leu-, revealing homology to conventional flavin-containing amine oxidases (EC 1.4.3.4).  相似文献   

15.
从绿色木霉(Trichoderma viride)WX24菌株发酵中分离、纯化葡萄糖氧化酶(T. viride glucose oxidase,TvGOD),研究其酶学特性,为葡萄糖氧化酶的应用提供理论基础。将绿色木霉胞外产酶发酵液经硫酸铵沉淀、透析、DEAE-Sepharose Fast Flow阴离子交换层析、Phenyl Sepharose 6 Fast Flow疏水层析和Sephadex G-75分子筛凝胶过滤层析纯化,并研究酶学性质。由十二烷基硫酸钠-聚丙烯酰胺凝胶电泳法测得TvGOD表观分子质量93 kDa,达到电泳纯。经纯化,TvGOD比活力为426.67 U/mg,纯化倍数为14.36,活力回收率19.15%。TvGOD最适pH 6.0,最适反应温度60 ℃。70 ℃以下、pH 4~7之间,TvGOD稳定性好。所测金属离子中,Na+和K+对酶活力无影响,Fe2+、Cu2+和Zn2+有轻微抑制作用,Mg2+和Ca2+对TvGOD有显著激活作用,而重金属离子Hg2+和Pb2+几乎完全抑制酶活力;丝氨酸蛋白酶抑制剂苯甲基磺酰氟和金属螯合剂乙二胺四乙酸二钠对TvGOD抑制作用较为强烈;TvGOD对表面活性剂十二烷基硫酸钠、十六烷基三甲基溴化铵、Triton X-100和吐温80表现出强稳定性。以葡萄糖为底物,酶Km和Vmax分别为11.62 μmol/L和8.244 mmol/(L·min)。基于TvGOD在高温、酸性下的高活性与高稳定性以及对表面活性剂的高耐受性、对底物葡萄糖高亲和性等优良特性,TvGOD很有希望在面粉加工、食品饮料、饲料及生物传感器领域以及需要在高温、高酸环境下使用的生物技术工业中应用。  相似文献   

16.
Two polyphenol oxidases (EC 1.14.18.1), P-1 and P-2, were purified as electrophoretically homogeneous proteins from the culture filtrate of Trametes sp. MS39401 by acetone precipitation and column chromatographies on DEAE-Sephadex A-50, Sephadex G-150 and hydroxylapatite. P-1 was purified 34-fold with a yield of 4.2%, while P-2 was purified 37-fold with a yield of 20.7%. The molecular masses of P-1 and P-2 were estimated to be 61 kDa and 90 kDa, respectively, by gel filtration. The isoelectric points of P-1 and P-2 were 3.4 and 2.7, respectively. The optimum pH range of both enzymes was 4.5-5.0 at 45 degrees C. The optimum temperature of both enzymes was 55 degrees C at pH 5.0. P-1 was stable at pH 5.0-7.5 and temperatures up to 60 degrees C. P-2 was stable at pH 3.0-7.5 and temperatures up to 50 degrees C. The thermostability of P-1 was comparable to that of the PM1 laccase of basidiomycetes, which was reported to be the most stable among basidiomycete laccases. Both enzymes were active toward various phenolic compounds and aminophenols. However, they lacked activity toward l-tyrosine. The K(m) values for (+)-catechin were 0.19 mM for P-1 and 0.67 mM for P-2. Both enzymes were appreciably inactivated by Hg(2+) and Sn(2+). Significant activation of neither enzyme was observed in the presence of metal ions and reagents. Both enzymes were significantly inhibited by copper-chelating agents, reducing agents and N-bromosuccinimide. Carbon monoxide caused appreciable inactivation of neither enzyme, so it is suggested that P-1 and P-2 belong to the group of laccases.  相似文献   

17.
为实现酶法水解菊糖制备高果糖浆,从宛氏拟青霉(Paecilomyces variotii)XS27发酵液中分离纯化菊粉酶,并对其酶学特性进行研究。发酵液经过硫酸铵盐析、透析、DEAE-Sepharose Fast Flow层析、Sephacry S-100分子筛过滤层析,得到电泳纯的菊粉酶,比活力327.4 U/mg,纯化倍数37.85。十二烷基硫酸钠-聚丙烯酰氨凝胶电泳测得菊粉酶为单一亚基的酶蛋白,分子质量62.0 kDa。菊粉酶能在较宽的pH值范围(3.5~6.5)内保持高活性,最适作用pH 4.0。在温度40~65 ℃之间,酶活力较高,最适作用温度为60 ℃。薄层色谱分析显示菊粉酶水解菊糖最终产物为果糖。以菊糖为底物,酶的Km和Vmax分别为5.93 μmol/L和75.18 μmol/(L·min)。Mg2+、Mn2+、Ca2+对酶有显著激活作用,Ba2+、Ni2+和Hg2+对酶有一定抑制作用。β-巯基乙醇、二硫苏糖醇和乙二胺四乙酸对酶有抑制作用,表面活性剂(十二烷基硫酸钠、Tween 80和Trition X100)以及乙醇对酶活力没有影响。从宛氏拟青霉XS27发酵液中分离纯化的菊粉酶在强酸高热的环境下具有强活性和稳定性,对表面活性剂乙醇有高耐受性,适合于果葡糖浆的工业化生产。  相似文献   

18.
Sea squirt alpha-N-acetylgalactosaminidase was purified to homogeneity. Its molecular weight was estimated to be approximately 160,000 by gel filtration and 40,000 by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) under reducing condition. The chromatographic and electrophoretic behaviors indicated that the enzyme was composed of four subunits. The optimum pH of the enzyme reaction was about 4.0 at 37 degrees C, while the enzyme was stable in the range of pH 5.0 to 6.0 during 4 h preincubation at 37 degrees C. Although the enzyme (0.1 unit) was stable at 0 degrees C for 30 min in the presence of 7.5 mM metal ions (Al3+, Ba2+, Ca2+, K+, Mn2+, Pb2+, Sr2+, and Zn2+), almost 40% of the enzyme activity was lost in the presence of Cu2+, Hg2+, monoiodoacetic acid, and EDTA. The enzyme hydrolyzed aryl N-acetyl-alpha-D-galactosaminide as well as GalNAcalpha1(-->4GalNAcalpha1-->)n 4GalNAc-p-aminobenzoic acid ethyl ester (ABEE) (n = 1-4), but GalNAcalpha1-->4GalNAc-ABEE only scarcely. Furthermore, an allergenic pentasaccharitol ABEE derivative, GalNAcalpha1-->2Fucalpha1-->3(GalNAcbeta1-->4) GlcNAcbeta1-->2(3-acetoamido-3-deoxy)L-threose-ABEE, the minimum structural unit for the sea squirt allergenicity was hydrolyzed to 95 mol% for 72 h incubation with the enzyme. The enzyme could be utilized as a powerful tool for the structural analyses of the carbohydrate epitopes of the sea squirt allergen molecules.  相似文献   

19.
Five strains of propionibacteria with 70-90% autolysis in sodium lactate broth (SLB) were studied by renaturing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Several lytic bands ranging in size between 25 and 143 kDa were detected by using propionibacteria cells or cell walls as substrate in the gel. Four Propionibacterium freudenreichii strains showed similar autolytic-enzyme profiles, consisting of two autolytic bands, one with molecular mass 162 kDa and one in the range 123-143 kDa. However, the Propionibacterium acidipropionici strain showed a completely different profile, consisting of 8 autolytic bands with molecular masses of 122, 97, 71, 55, 43, 39, 31, and 25 kDa. Lytic enzymes from P. freudenreichii INF-alpha, P. freudenreichii ISU P-59, P. freudenreichii ISU P-24, and P. freudenreichii ISU P-50 showed lytic activity against cells from all these four strains, but not against P. acidipropionici ATCC 4965. However, P. acidipropionici ATCC 4965 autolysed only its own cells. Effects of pH, temperature, and ions on autolytic activity were tested by renaturing SDS-PAGE and in buffer systems. Results from the SDS-PAGE electrophoresis showed optimal autolytic activity of P. acidipropionici ATCC 4965 at 37 degrees C and in the pH range 7 to 8.5 and of P. freudenreichii ISU P-59 at 20 degrees C and in the pH range 5 to 7. The autolytic activity of P. acidipropionici ATCC 4965 was extremely heat stable (100 degrees C, 2 h), in contrast to the lytic activity of P. freudenreichii ISU P-59, which was heat labile. The autolytic activities of P. acidipropionici ATCC 4965 were inhibited by divalent cations, however, the lytic activities of P. freudenreichii ISU P-59 were activated by Mn(2+), Ca(2+), and Co(2+). In buffer, optimum autolysis of P. acidipropionici ATCC 4965 was observed at pH 8.5 and at 40 degrees C. P. freudenreichii ISU P-59 showed optimum autolysis in buffer at pH 7.5 and at 30 degrees C.  相似文献   

20.
2-Hydroxy-6-oxo-7-methylocta-2,4-dienoate (6-isopropyl-HODA) hydrolase (CumD), an enzyme of the cumene biodegradation pathway encoded by the cumD gene of Pseudomonas fluorescens IP01, was purified to homogeneity from an overexpressing Escherichia coli strain. SDS-polyacrylamide gel electrophoresis and gel filtration demonstrated that it is a dimeric enzyme with a subunit molecular mass of 32 kDa. The pH optima for activity and stability were 8.0 and 7.0-9.0, respectively. The enzyme exhibited a biphasic Arrhenius plot of catalysis with two characteristic energies of activation with a break point at 20 degrees C. The enzyme has a K(m) of 7.3 microM and a k(cat) of 21 s(-1) for 6-isopropyl-HODA (150 mM phosphate, pH 7.5, 25 degrees C), and its substrate specificity covers larger C6 substituents compared with another monoalkylbenzene hydrolase, TodR Unlike TodF, CumD could slightly hydrolyze 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate (6-phenyl-HODA). A mutant enzyme as to a putative active site residue, S103A, had 10(5)-fold lower activity than that of the wild-type enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号