首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The steady state critical heat fluxes (CHFs) and the heat transfer of the subcooled water flow boiling for the flow velocities (u = 17.2-42.4 m/s), the inlet subcoolings (ΔTsub,in = 80.9-147.6 K), the inlet pressures (Pin = 812.1-1181.5 kPa) and the exponentially increasing heat input (Q0 exp(t/τ), τ = 8.5 s) are systematically measured by the experimental water loop comprised of a new multi-stage canned-type circulation pump with high pump head. The SUS304 test tube of inner diameter (d = 6 mm), heated length (L = 59.5 mm), L/d = 9.92 and wall thickness (δ = 0.5 mm) with surface roughness (Ra = 3.18 μm) is used in this work. The steady state CHFs of the subcooled water flow boiling for the flow velocities ranging from 17.2 to 42.4 m/s are clarified. The steady state CHFs are compared with the values calculated by our transient CHF correlations against outlet and inlet subcoolings based on the experimental data for the flow velocities ranging from 4.0 to 13.3 m/s. The influence of flow velocity at high liquid Reynolds number on the subcooled flow boiling CHF is investigated in detail and the widely and precisely predictable correlations of the transient CHF correlations against outlet and inlet subcoolings in a short vertical tube are derived based on the experimental data at high liquid Reynolds number. The transient CHF correlations can describe the subcooled flow boiling CHFs for the wide range of flow velocities at high liquid Reynolds number obtained in this work within ±15% difference.  相似文献   

2.
The twisted-tape-induced swirl flow heat transfer due to exponentially increasing heat inputs with various exponential periods (Q = Q0 exp(t/τ), τ = 7, 14 and 23 s) and the twisted-tape-induced pressure drop were systematically measured with mass velocities, G, ranging from 4022 to 15,140 kg/m2 s by an experimental water loop flow. Measurements were made on a 59.2 mm effective length which was spot-welded two potential taps on the outer surface of a 6 mm inner diameter, a 69.6 mm heated length and a 0.4 mm thickness of platinum circular test tube. The twisted tapes with twist ratios, y [=H/d = (pitch of 180° rotation)/d], of 2.39, 3.39 and 4.45 were used in this work. The relation between the swirl velocity and the pump input frequency and that between the fanning friction factor and Reynolds number (Red = 2.04 × 104 to 9.96 × 104) were clarified. The twisted-tape-induced swirl flow heat transfers with y = 2.39, 3.39 and 4.45 were compared with the values calculated by our correlation of the turbulent heat transfer for the empty tube and other worker's one for the circular tube with the twisted-tape insert. The influence of y and Reynolds numbers based on swirl velocity, Resw, on the twisted-tape-induced swirl flow heat transfer was investigated into details and the widely and precisely predictable correlation of the twisted-tape-induced swirl flow heat transfer was derived based on the experimental data. The correlation can describe for the twisted-tape-induced swirl flow heat transfer for the wide ranges of twist ratios (y = 2.39-4.45), mass velocities (G = 4022-15140 kg/m2 s) and Reynolds numbers based on swirl velocity (Resw = 2.88 × 104 to 1.22 × 105) within −10 to +30% difference.  相似文献   

3.
The subcooled boiling heat transfer and the steady-state critical heat fluxes (CHFs) in a short vertical SUS304-tube for the flow velocities (u = 17.28-40.20 m/s), the inlet liquid temperatures (Tin = 293.30-362.49 K), the inlet pressures (Pin = 842.90-1467.93 kPa) and the exponentially increasing heat input (Q = Q0 exp(t/τ), τ = 8.5 s) are systematically measured by the experimental water loop comprised of a multistage canned-type circulation pump with high pump head. The SUS304 test tubes of inner diameters (d = 3 and 6 mm), heated lengths (L  =  33 and 59.5 mm), effective lengths (Leff = 23.3 and 49.1 mm), L/d (=11 and 9.92), Leff/d (=7.77 and 8.18), and wall thickness (δ = 0.5 mm) with average surface roughness (Ra = 3.18 μm) are used in this work. The inner surface temperature and the heat flux from non-boiling to CHF are clarified. The subcooled boiling heat transfer for SUS304 test tube is compared with our Platinum test tube data and the values calculated by other workers’ correlations for the subcooled boiling heat transfer. The influence of flow velocity on the subcooled boiling heat transfer and the CHF is investigated into details and the widely and precisely predictable correlation of the subcooled boiling heat transfer for turbulent flow of water in a short vertical SUS304-tube is given based on the experimental data. The correlation can describe the subcooled boiling heat transfer obtained in this work within 15% difference. Nucleate boiling surface superheats for the SUS304 test tube become very high. Those at the high flow velocity are close to the lower limit of Heterogeneous Spontaneous Nucleation Temperature. The dominant mechanisms of the flow boiling CHF in a short vertical SUS304-tube are discussed.  相似文献   

4.
Critical heat flux (CHF) experiments have been carried out in a wide range of pressure for an internally heated vertical annulus. The experimental conditions covered a range of pressure from 0.57 to 15.01 MPa, mass fluxes of 0 kg m−2 s−1 and from 200 to 650 kg m−2 s−1, and inlet subcoolings from 85 to 413 kJ kg−1. Most of the CHFs were identified to the dryout of the liquid film in the annular-mist flow. For the mass fluxes of 550 and 650 kg m−2 s−1, the CHFs had a maximum value at a pressure of 2–3 MPa, and the pressure at the maximum CHF values had a trend moving toward the pressure at the peak value of pool boiling CHF as the mass flux decreased. The CHF data under a zero mass flux condition indicate that both the effects of pressure and inlet subcooling on the CHF were smaller, compared with those for the CHF with a net water upflow. The Doerffer correlation using the 1995 CHF look-up table and the Bowring correlation show a good prediction capability for the present CHF data.  相似文献   

5.
The effect of axial heat flux distribution (AFD) on the critical heat flux (CHF) was investigated. CHF measurements were obtained with HFC-134a cooled vertical tubes having four non-uniform and one uniform AFD profiles. The HFC-134a test conditions covered a pressure range from 1.6 to 2.4 MPa, a mass-flux range from 2.8 to 4.7 Mg m−2 s−1, and an inlet-quality range from −0.9 to 0. The water-equivalent pressure and mass-flux ranges are 10–14 MPa and 4–6.5 Mg m−2 s−1, respectively.In general, the observed AFD effect on critical power is small at high inlet subcoolings. At low inlet subcoolings, the critical power for the inlet-peak profile is up to 15% higher than that for the outlet-peak profile. A local conditions analysis showed that the AFD has the strongest effect on CHF at high dryout qualities. CHF values for non-uniform AFDs could be 50% lower than those for the uniform AFD. The AFD effect on CHF becomes diminished with decreasing dryout quality.Four different approaches to account for the effect of AFD on CHF were assessed against the experimental values from the current experiment. The boiling-length-average heat-flux approach with the boiling-length starting point at the onset of annular flow (OAF) provided the best prediction of the critical power and the CHF location.  相似文献   

6.
The thermal behavior of a directly water-cooled W/Cu movable poloidal limiter was investigated in HT-7, a medium-sized superconducting tokamak with limiter configuration, major radius R = 1.22 m, and minor radius a = 0.27 m. The W/Cu movable limiter (ML) was exposed to the plasma at various radial positions at r < a. The surface and bulk temperatures were monitored by an IR-camera and the thermocouples, respectively. The heat flux deposited on the limiter was evaluated by an ANSYS code using the measured surface temperatures as boundary conditions. It was found that the maximum heat flux incident on the ML was less than 1 MW/m2 in the Ohmic discharges, but reached up to 5-7 MW/m2 in the discharges with lower hybrid current drive (LHCD). A simple model was developed to understand heat transport to the W/Cu ML, taking into account the “funnel effect”.  相似文献   

7.
This paper presents a method of characterizing the heat flux deposition pattern on HT-7 movable limiter, a new component in the spring experimental campaign of year 2006. A new modeling establishment combines with heat transfer simulation with ANSYS code, and a shot of long pulse discharge is chosen with small radius 265 mm of movable limiter, which is 5 mm smaller than that of the main toroidal limiters. Both parallel and perpendicular heat flux are taken into account and different ratios of them are also tested in simulations. The simulation temperature values match well with the results of the IR-camera. Temperature distribution shows that ?||/? = 5 is quite suitable in HT-7 device, and the maximum heat flux is about 10 MW/m2 and average heat flux is about 5 MW/m2 on the movable limiter. This method can be also used in other tokamak devices with limiter configuration and circular cross-section shape.  相似文献   

8.
Permeation of hydrogen isotope through a high-temperature alloy used as heat exchanger and steam reformer pipes is an important problem in the hydrogen production system connected to be a high-temperature engineering test reactor (HTTR). An experiment of hydrogen (H2) and deuterium (D2) permeation was performed to obtain permeability of H2 and D2 of Hastelloy XR, which is adopted as heat transfer pipe of an intermediate heat exchanger of the HTTR. Permeability of H2 and D2 of Hastelloy XR were obtained as follows. The activation energy E0 and pre-exponential factor F0 of the permeability of H2 were E0=67.2±1.2 kJ mol−1 and F0=(1.0±0.2)×10−8 m3(STP) m−1 s−1 Pa−0.5, respectively, in the pipe temperature ranging from 843 K (570 °C) to 1093 K (820 °C). E0 and F0 of the permeability of D2 were respectively E0=76.6±0.5 kJ mol−1 and F0=(2.5±0.3)×10−8 m3(STP) m−1 s−1 Pa−0.5 in the pipe temperature ranging from 943 K (670 °C) to 1093 K (820 °C).  相似文献   

9.
Studies reported in the past on critical heat flux (CHF) are mostly limited to vertical flow, large channel diameter, high pressure and high mass flux. Only few investigations are reported in the literature for horizontal flow CHF especially under low pressure and low flow conditions. Hence, predictive methods of CHF for horizontal flow are scarce. There is a need for understanding CHF in horizontal flow under low pressure and low flow conditions because they are commonly encountered in nuclear reactor fuel channels of pressurized heavy water reactor (PHWR) under loss of coolant accidental (LOCA) conditions. The present work investigates CHF of horizontal flow for low flow rates (mass flux of 100–400 kg/m2 s) at nearly atmospheric pressure conditions. Parameters covered in this study are diameter (5.5 mm, 7.5 mm and 9.5 mm), length (0.45 m and 0.8 m) and a inlet temperature of 32 °C. The first occurrence of ‘red hot’ spot on the test section is considered as the onset of critical heat flux condition in the present work. Experimental results obtained are compared with Groeneveld et al. (2007) look up table data for vertical flow after applying correction factor given by Wong et al. (1990). The deviation of experimental CHF data from those predicted using Groeneveld et al. (2007) look up table and Wong et al. (1990) correction factor is more than 50%.  相似文献   

10.
The online time-differential perturbed angular correlation (TDPAC) method was applied to a study of the physical states of a probe 19F, the β decay product of 19O (t1/2 = 26.9 s), implanted in highly oriented pyrolytic graphite. The observed magnitude of the electric field gradient at the probe nucleus, ∣Vzz∣ = 2.91(17) × 1022 V m−2, suggests that the incident 19O atoms are stabilized at an interlayer position with point group C3v. Exhibiting observed TDPAC spectra having a clear sample-to-detector configuration dependence, we demonstrate the applicability of the present online method with a short-lived radioactive 19O beam.  相似文献   

11.
The thermal conductivities of (U,Pu,Np)O2 solid solutions were studied at temperatures from 900 to 1770 K. Thermal conductivities were obtained from the thermal diffusivity measured by the laser flash method. The thermal conductivities obtained below 1400 K were analyzed with the data of (U,Pu,Am)O2 obtained previously, assuming that the B-value was constant, and could be expressed by a classical phonon transport model, λ = (A + BT)−1, A(z1, z2) = 3.583 × 10−1 × z1 + 6.317 × 10−2 × z2 + 1.595 × 10−2 (m K/W) and B = 2.493 × 10−4 (m/W), where z1 and z2 are the contents of Am- and Np-oxides. It was found that the A-values increased linearly with increasing Np- and Am-oxide contents slightly, and the effect of Np-oxide content on A-values was smaller than that of Am-oxide content. The results obtained from the theoretical calculation based on the classical phonon transport model showed good agreement with the experimental results.  相似文献   

12.
The corrosion behaviour of the martensitic T91 steel and the austenitic AISI 316L steel was analysed. The steels were immersed in stagnant molten Pb-55.2wt%Bi alloy at 823 K for different exposure times (t = 550-2000 h). The corrosion tests were carried out both under Ar and under Ar-5%H2 mixture. Under the oxidising conditions (PO2 = 6 × 10−3 Pa), the formation of oxide layers was observed which prevent the penetration of the liquid alloy into the matrix, while under the Ar-5%H2 mixture (PO2 = 3.2 × 10−23 Pa), two phenomena occurred: a ‘reactive penetration’ at the liquid alloy/steel interface and the competition between oxidation and penetration.  相似文献   

13.
An artificial neural network (ANN) was applied successfully to predict flow boiling curves. The databases used in the analysis are from the 1960's, including 1,305 data points which cover these parameter ranges: pressure P=100–1,000 kPa, mass flow rate G=40–500 kg/m2-s, inlet subcooling ΔTsub =0–35°C, wall superheat ΔTw = 10–300°C and heat flux Q=20–8,000kW/m2. The proposed methodology allows us to achieve accurate results, thus it is suitable for the processing of the boiling curve data. The effects of the main parameters on flow boiling curves were analyzed using the ANN. The heat flux increases with increasing inlet subcooling for all heat transfer modes. Mass flow rate has no significant effects on nucleate boiling curves. The transition boiling and film boiling heat fluxes will increase with an increase in the mass flow rate. Pressure plays a predominant role and improves heat transfer in all boiling regions except the film boiling region. There are slight differences between the steady and the transient boiling curves in all boiling regions except the nucleate region. The transient boiling curve lies below the corresponding steady boiling curve.  相似文献   

14.
The thermal conductivities of (U0.68Pu0.30Am0.02)O2.00−x solid solutions (x = 0.00-0.08) were studied at temperatures from 900 to 1773 K. The thermal conductivities were obtained from the thermal diffusivities measured by the laser flash method. The thermal conductivities obtained experimentally up to about 1400 K could be expressed by a classical phonon transport model, λ = (A + BT)−1, A(x) = 3.31 × x + 9.92 × 10−3 (mK/W) and B(x) = (−6.68 × x + 2.46) × 10−4 (m/W). The experimental A values showed a good agreement with theoretical predictions, but the experimental B values showed not so good agreement with the theoretical ones in the low O/M ratio region. From the comparison of A and B values obtained in this study with the ones of (U,Pu)O2−x obtained by Duriez et al. [C. Duriez, J.P. Alessandri, T. Gervais, Y. Philipponneau, J. Nucl. Mater. 277 (2000) 143], the addition of Am into (U, Pu)O2−x gave no significant effect on the O/M dependency of A and B values.  相似文献   

15.
Towards the cause of serving economic power production through fast reactors, it is necessary to bring in functionally more efficient and innovative design options, which also includes exploration of cheaper material alternatives, wherever possible. In this regard, the feasibility of using a commercial grade ferroboron alloy as potential alternate shielding material in the outer subassemblies of future Indian fast reactors has been recently investigated from shielding physics point of view. The present study explores in detail the high temperature thermal stability and the metallurgical compatibility of Fe-15.4B-0.3C-0.89Si-0.17Al-0.006S-0.004P-0.003O (wt.%) alloy with SS 304L material. In addition, the high temperature specific heat and lattice thermal expansion characteristics of this alloy have also been investigated as a part of the present comprehensive characterisation program. The Fe-15 wt.%B alloy is constituted of principally of two boride phases, namely tetragonal Fe2B and orthorhombic FeB phases, which in addition to boron also contains some amount of C and Si dissolved in solid solution form. This Fe-B alloy undergoes a series of phase transformation as a function of increasing temperature; the major ones among them are the dissolution of Fe2B-lower boride in the matrix through a eutectic type reaction, which results in the formation of the first traces of liquid at 1500 K/1227 °C. This is then followed by the dissolution of the major FeB boride phase in liquid and the melting process is completed at 1723 K/1450 °C. In a similar manner, the thermal stability studies performed on combined Fe-B + 304L steel reaction couples revealed that a pronounced pre-melting or liquid phase formation occurs at a temperature of 1471 K/1198 °C, which is lower than the melting onset of both Fe-B and SS 304L. It is found that within the limits of experimental uncertainty, this pre-melting phenomenon occurred at the same fixed temperature of 1471 K/1198 °C, irrespective of the mass ratios of Fe-B and 304L steel. Further, it is also found that SS 304L is completely soluble in Fe-B alloy and the fused product upon solidification formed a mixture of complex intermetallic borides, such as (Fe,Cr)(B,C), (Fe,Cr)2(B,C) and (Fe,Ni)3B. In the temperature range 823-1073 K (550-800 °C), the SS 304L clad is found to interact strongly with the Fe-B alloy. The diffusion layer thickness or the attack layer depth (x) is found to vary with time (t) up to about 5000 h, according to the empirical rate law, x2 = k(T)t. The temperature sensitivity of the rate constant, k(T) is found to obey the Arrhenius law, k(T) = ko exp(−Q/RT), with Q = 57 kJ mol−1, being the effective activation energy for the overall diffusional interaction of Fe-B and SS 304L. The room temperature specific heat capacity of Fe-B alloy is found to be 538 kJ kg−1 K−1. The CP values measured over 300-1350 K, is found vary smoothly with temperature according to the expression, CP/kJ kg−1 K−1 = 0.62094 + 0.00012T + 10685.81T−2. The lattice thermal expansion of both FeB and Fe2B phases are found to be anisotropic in that the c-axis expansion is found to be more than that along a and b axes. The room temperature volume thermal expansivity of FeB and Fe2B phases are found to be of the order of 48 × 10−6 K−1 and 28 × 10−6 K−1, respectively. The thermal expansion of FeB is found to be more temperature sensitive than that of Fe2B.  相似文献   

16.
Divertor plasma-facing components of future fusion reactors should be able to withstand heat fluxes of 10-20 MW/m2 in stationary operation. Tungsten blocks with an inner cooling tube made of CuCr1Zr, so-called monoblocks, are potential candidates for such water-cooled components. To increase the strength and reliability of the interface between the W and the cooling tube of a Cu-based alloy (CuCr1Zr), a novel advanced W-fibre/Cu metal matrix composite (MMC) was developed for operation temperatures up to 550 °C. Based on optimization results to enhance the adhesion between fibre and matrix, W fibres (Wf) were chemically etched, coated by physical vapour deposition with a continuously graded W/CuPVD interlayer and then heated to 800 °C. The Wf/Cu MMC was implemented by hot-isostatic pressing and brazing process in monoblock mock-ups reinforcing the interface between the plasma-facing material and the cooling channel. The suitability of the MMC as an efficient heat sink interface for water-cooled divertor components was tested in the high heat flux (HHF) facility GLADIS. Predictions from finite element simulations of the thermal behaviour of the component under loading conditions were confirmed by the HHF tests. The Wf/Cu MMC interlayer of the mock-ups survived cyclic heat loads above 10 MW/m2 without any damage. One W block of each tested mock-up showed stable thermal behaviour at heat fluxes of up to 10.5 MW/m2.  相似文献   

17.
Critical heat flux at high velocity channel flow with high subcooling   总被引:1,自引:0,他引:1  
A quantitative analysis of critical heat flux (CHF) in heated channels under high mass flux with high subcooling was successfully carried out by applying a new flow model to the existing CHF model of a macro-water-sublayer on the heated wall and steam blankets over it. The CHF correlation proposed could correctly predict the existing experimental data for circular tubes of 0.33–4 mm in diameter with mass flux of 124–90 000 kg (m2 s)−1 and inlet water subcooling of 35–210 K at 0.1–7.1 MPa, resulting in CHF of 4.2–224 MW m−2, and for rectangular channels of 3–20 mm gap with a mass flux of 940–27 000 kg (m2 s)−1 and inlet water subcooling of 13–166 K at 0.1–3.0 MPa, resulting in CHF of 2.0–62 MW m−2. An error of the CHF correlation has also been estimated.  相似文献   

18.
Tensile and fracture toughness properties of a precipitation-hardened CuCrZr alloy were investigated in two heat treatment conditions: solutionized, water quenched and aged (CuCrZr SAA), and hot isostatic pressed, solutionized, slow-cooled and aged (CuCrZr SCA). The second heat treatment simulated the manufacturing cycle for large components, and is directly relevant for the ITER divertor components. Specimens were neutron irradiated at ∼80 °C to two fluences, 2 × 1024 and 2 × 1025 n/m2 (E > 0.1 MeV), corresponding to displacement doses of 0.15 and 1.5 displacements per atom (dpa). Tensile and fracture toughness tests were carried out at room temperature. Significant irradiation hardening and plastic instability at yield occurred in both heat treatment conditions with a saturation dose of ∼0.1 dpa. Neutron irradiation slightly reduced fracture toughness in CuCrZr SAA and CuCrZr SCA. The fracture toughness of CuCrZr remained high up to 1.5 dpa (J> 200 kJ/m2) for both heat treatment conditions.  相似文献   

19.
A nanofluid is a colloidal suspension of nano-scale particles in water, or other base fluids. Previous pool boiling studies have shown that nanofluids can improve the critical heat flux (CHF) by as much as 200%. In a previous paper, we reported on subcooled flow boiling CHF experiments with low concentrations of alumina, zinc oxide, and diamond nanoparticles in water (≤0.1% by volume) at atmospheric pressure, which revealed a substantial CHF enhancement (∼40-50%) at the highest mass flux (G = 2500 kg/m2 s) and concentration (0.1 vol.%) for all nanoparticle materials (Kim et al., 2009). In this paper, we focus on the flow boiling heat transfer coefficient data collected in the same tests. It was found that for comparable test conditions the values of the nanofluid and water heat transfer coefficient are similar (within ±20%). The heat transfer coefficient increased with mass flux and heat flux for water and nanofluids alike, as expected in flow boiling. A confocal microscopy-based examination of the test section revealed that nanoparticle deposition on the boiling surface occurred during nanofluid boiling. Such deposition changes the number of micro-cavities on the surface, but also changes the surface wettability. A simple model was used to estimate the ensuing nucleation site density changes, but no definitive correlation between the nucleation site density and the heat transfer coefficient data could be found.  相似文献   

20.
The effects of using low and high enrichment uranium fuel on the uncontrolled loss of flow transients in a material test research reactor were studied. For this purpose, simulations were carried out of an MTR fuelled separately with LEU and HEU fuel, to determine the reactor performance under loss of flow transients with totally failed external control systems. The coolant pump was assumed to loose its performance and the coolant flow rate reduced according to the relation m(t)/m0 = exp(−t/25) to a new stable level. The new reduced flows m/m0 = 0.2, 0.4, 0.6 and 0.8 were modeled. The nuclear reactor analysis code PARET was employed to carry out these calculations. It was observed that the reactors stabilized at new power levels which were lower than the original power level, with the power of HEU fuelled reactor slightly lesser than that of the LEU fuelled reactor. However, at the start of transient, the LEU fuelled reactor had a lower power level resulting in lower fuel, clad and coolant temperatures than the HEU fuelled reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号