首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we have developed a thermo-hydraulic and safety analysis code named TSAC1.0 with Visual Fortran 6.5 to analyze the thermal-hydraulic characteristics of the China advanced research reactor (CARR) under reactivity insertion accident (RIA) which was induced by unexpected control rod withdrawal in full power condition. The neutron kinetic model depended on the point kinetics with six groups of delayed neutrons including reactivity feedback effects and it was adopted for the solution of reactor power. Furthermore, a new simple and convenient model was adopted for the solution of the transient behaviors of main pump instead of the complicated four-quadrant model. Visual input, real-time processing and dynamic visualization output were achieved using Microsoft Visual Studio.NET 2003 to make the application of TSAC1.0 much more convenient in the engineering. The simulated results of TSAC1.0 were found to be in reasonable agreement with those of RELAP5/MOD3 and showed that the parameters, including the peak coolant temperature, the peak heat structure temperature, and MDNBR, were in the acceptable range of design safety limit under RIA.  相似文献   

2.
物理-热工耦合是超临界水堆系统分析的关键问题之一。以日本超临界水冷热堆Super LWR的堆芯设计为例,借助Dragon编制中子截面数据库,建立双群中子扩散方程计算模块,联系同时建立的热工计算模块,得到超临界水堆的物理-热工耦合计算模型。通过对比稳态与瞬态工况下耦合前、后的热工工况,分析物理-热工耦合条件下的超临界水堆系统热工特性。结果表明:在稳态工况下,物理-热工耦合将导致内、外组件堆芯功率峰值沿轴向发生明显偏移,使得部分节点的包壳温度升高,但包壳最高温度降低;在瞬态工况下,物理-热工耦合将导致堆芯包壳最高温度的发生位置有所改变。发生给水加热丧失瞬态后,在某一时刻,外部组件的包壳最高温度将转而超过内部组件的包壳最高温度。可见,物理-热工耦合对包壳最高温度的大小和发生位置均可能产生明显影响。计算分析可为超临界水堆瞬态及安全分析提供相应理论参考。  相似文献   

3.
为研究西安脉冲堆(XAPR)在意外引入反应性且停堆系统失效事故下的瞬态安全特性,本文基于XAPR的结构和运行特点,建立了适用于XAPR的瞬态热工水力分析模型,并开发了用于XAPR安全特性分析的瞬态热工水力程序TSAC-XAPR。利用TSAC-XAPR程序对反应性引入事故进行模拟计算,结果表明:当XAPR在额定功率范围内运行时,发生反应性引入事故后,堆芯能依靠自身的固有反馈机制使脉冲堆重新达到稳定运行状态;当运行功率过高尤其是超过临界值时,反应性引入事故将导致脉冲堆关键热工水力参数发生振荡,无法再次达到稳态。此外,不同反应性引入方式将影响堆芯参数在反应性引入过程中的变化趋势,但并不影响其最终稳态值。  相似文献   

4.
In order to study the transient safety characteristics of Xi’an Pulsed Reactor (XAPR) when unexpected reactivity insertion accident happened and shutdown system failed, the main mathematical models were established based on the specific core structure and operation conditions of XAPR. Meanwhile, a transient thermal-hydraulic code called TSAC-XAPR was developed to analyze the safety characteristics of XAPR. The TSAC-XAPR code was then used to simulate the reactivity insertion accident of XAPR. The calculation results indicate that when XAPR operating under rated power, reactor can reach a new steady state for reactivity insertion accident, depending on its inherent feedback mechanism. When XAPR operating under high power, especially above the critical power, key thermal-hydraulic parameters of reactor will tend to oscillate and can’t reach a steady state again for reactivity insertion accident. Besides, it is also found that different reactivity insertion modes will only affect the variation trend during the phase of reactivity insertion instead of the final value at steady state.  相似文献   

5.
微型中子源反应堆(简称微堆)是一种典型的罐池式反应堆,采用自然对流循环冷却。为研究微堆的安全性,对其额定功率运行以及事故工况下的瞬态热工水力特性进行了模拟。针对额定功率运行工况,采用CFD软件进行瞬态热工水力三维数值模拟,同时采用RELAP5程序进行一维计算,二者计算结果相符,表明了计算结果的正确性及额定功率工况的安全性。采用RELAP5程序对反应性引入事故进行了计算,计算结果进一步印证了微堆的自稳特性和固有安全性。  相似文献   

6.
池式快堆系统分析软件稳态功能开发   总被引:5,自引:5,他引:0  
针对目前我国快堆系统分析软件主要采用国外引进方式而导致难以掌握核心物理模型的现状,以中国实验快堆(CEFR)为研究和建模对象,基于中子动力学模型、堆芯及其热钠池模型、中间热交换器模型、一回路和中间回路热量传输系统模型、三回路模型等,自主开发了基于CompaqVisualFortran(CVF)的适用于稳态计算的池式快堆系统分析软件SAC-CFR。通过与中国实验快堆安全分析报告中数据进行对比,验证了所开发模型的精度,为下一步瞬态模型的开发及控制和保护系统的开发做准备。  相似文献   

7.
AP1000主给水管道断裂事故中PRHR系统冷却能力分析   总被引:2,自引:2,他引:0  
使用机理性分析程序建立包括主冷却剂系统、专设安全设施及相关二回路管道的AP1000核电厂模型,对AP1000核电厂主给水管道断裂事故进程进行计算分析。着重分析了非能动余热排出(PRHR)系统在主给水管道断裂事故工况中的瞬态响应、热工水力行为及其冷却能力,并针对PRHR系统流道阻力特性的不确定性对冷却能力的影响进行分析。分析结果表明,在主给水管道断裂事故中,PRHR系统的热移出功率最终能够与堆芯的衰变功率相匹配,有能力带走衰变热,保证一回路系统最终处于安全停堆状态,不发生堆芯损伤,当PRHR系统阻力系数增加时,PRHR系统的流量和换热功率会降低,对PRHR系统冷却能力造成影响。  相似文献   

8.
采用RELAP5-HD作为堆芯耦合计算程序,以秦山核电二期工程反应堆堆芯为研究对象,建立堆芯活性区的物理/热工水力耦合模型,在此基础上进行了稳态计算和掉棒事故仿真研究。结果表明,使用RELAP5-HD计算得到的结果与电厂实测值符合较好,获得的掉棒事故参数曲线能准确反映事故工况下的参数变化趋势。稳态和事故工况的计算结果均符合堆芯物理/热工水力反馈效应的理论分析,证实了所建立的堆芯耦合模型的准确性,为下一步进行核电站系统的仿真分析提供基础。  相似文献   

9.
热工水力数值模拟是反应堆系统设计和安全分析的重要内容,以RELAP5为代表的系统程序可对瞬态或事故工况进行快速分析,同时以FLUENT为代表的计算流体动力学(CFD)程序对堆芯局部三维现象的分析也越来越重要。为综合利用两者的优点,以RELAP5/FLUENT为基础,利用对RELAP5程序源代码的二次开发和FLUENT的用户自定义函数(UDF)进行编程,开发了RELAP5/FLUENT耦合程序。利用flibe熔盐在水平圆管流动问题验证了程序耦合的正确性;针对2 MW熔盐堆进行了稳态模拟,耦合程序能详细分析熔盐堆的热工水力行为;模拟了2 MW熔盐堆功率突变的瞬态热工水力行为,相对于单独的RELAP5,耦合程序能更好地揭示熔盐堆系统和堆芯的三维物理现象。该耦合程序可用于解决熔盐堆热工水力分析中存在的显著三维混合现象的问题。  相似文献   

10.
The thermal-hydraulic analysis program for integral reactor system (TAPINS) is a thermal-hydraulic system code developed by Seoul National University for transient analysis of an integral reactor, REX-10. Specialized for a fully passive integral pressurized water reactor, TAPINS adopts a one-dimensional four-equation drift-flux model for two-phase flows. It also consists of component models for the core, the helical-coil steam generator, and the steam-gas pressurizer. This paper presents the developmental assessment of TAPINS to validate its applicability to the thermal-hydraulic analysis of REX-10. Assessment problems are determined by taking into account thermal-hydraulic phenomena expected during design basis accidents of REX-10, including the loss-of-feedwater accident and the small-break loss-of-coolant accident. To confirm the predictive capability of TAPINS for these phenomena, the TAPINS model is validated against four sets of separate effects problems, including the pressurizer insurge test, the subcooled boiling experiment, the critical flow test, and the Edwards pipe problem. In addition, the calculation results of TAPINS are compared with the experimental data obtained from a series of integral effects tests using a scaled apparatus of REX-10. From the validation results, it is demonstrated that TAPINS can provide the reasonable prediction on the thermal-hydraulic responses of REX-10 during the transient and accident conditions.  相似文献   

11.
对我国首个大型非能动堆芯冷却系统整体试验台架(ACME)中的典型小破口事故进行了试验及数值分析。分析结果表明:在ACME上开展的典型小破口试验,其事故序列及试验现象符合预期;RELAP5数值分析的主要结果能较好地反映试验现象,与试验结果吻合良好;堆芯棒束区相间摩擦模型的选用对堆芯坍塌液位的计算有较大影响,在不同阶段选用不同的模型可使计算结果更好地与试验值相匹配。  相似文献   

12.
The methods developed for full-power probabilistic safety assessment, including thermal-hydraulic methods, have been widely applied to low power and shutdown conditions. Experience from current low power and shutdown probabilistic safety assessments, however, indicates that the thermal-hydraulic methods developed for full-power probabilistic safety assessments are not always reliable when applied to low power and shutdown conditions and consequently may yield misleading and inaccurate risk insights. To increase the usefulness of the low power and shutdown risk insights, the current methods and tools used for thermal-hydraulic calculations should be examined to ascertain whether they function effectively for low power and shutdown conditions. In this study, a platform for relatively detailed thermal-hydraulic calculations applied to low power and shutdown conditions in a pressurized water reactor was developed based on the best estimate thermal-hydraulic analysis code, MARS2.1. To confirm the applicability of the MARS platform to low power and shutdown conditions, many thermal-hydraulic analyses were performed for the selected topic, i.e. the loss of shutdown cooling events for various plant operating states at the Korean standard nuclear power plant. The platform developed in this study can deal effectively with low power and shutdown conditions, as well as assist the accident sequence analysis in low power and shutdown probabilistic safety assessments by providing fundamental data. Consequently, the resulting analyses may yield more realistic and accurate low power and shutdown risk insights.  相似文献   

13.
A scaling methodology for a small-scale integral test facility was investigated in order to analyze thermal-hydraulic phenomena during a DVI (direct vessel injection) line SBLOCA (small break loss-of-coolant accident) in an APR1400 (advanced power reactor 1400 MWe) pressurized water reactor. The test facility SNUF (Seoul National University Facility) was utilized as a reduced-height and reduced-pressure integral test loop. To determine suitable test conditions for simulating the prototype in the SNUF experiment, the energy scaling methodology was propose to scale the coolant mass inventory and the thermal power for a reduced-pressure condition. The energy scaling methodology was validated with a system code (MARS) analysis for an ideally scaled-down SNUF model and that predicted a reasonable transient of pressure and coolant inventory when compared to the prototype model. For the actually constructed SNUF, the effect of scaling distortions in the test facility's thermal power and the loop geometry was analytically investigated. To overcome the limitation of the thermal power supply in the facility, the convective heat transfer between primary and secondary systems at the steam generator U-tubes was excluded and a modified power curve was applied for simulating the core decay heat. From the code analysis results for the actual SNUF model, the application of the modified power curve did not affect the major events occurring during the transient condition. The results revealed that the scaling distortion in the actual SNUF geometry also did not strongly disturb significant thermal-hydraulic phenomena such as the downcomer seal clearing. Thus, with an adoption of the energy scaling methodology, the thermal-hydraulic phenomena observed in the SNUF experiment can be properly utilized in a safety analysis for a DVI line break SBLOCA in the APR1400.  相似文献   

14.
Nuclear safety analysis remains of crucial importance for both the design and the operation of nuclear reactors. Safety analysis usually entails the simulation of several selected postulated accidents, which can be divided into two main categories, namely reactivity insertion accident (RIA) and loss of flow accident (LOFA). In this paper, thermal-hydraulic simulations of fast LOFA accident were carried out on the new core configuration of the material test research reactor NUR. For this purpose, the nuclear reactor analysis PARET code was used to determine the reactor performance by calculating the reactor power, the reactivity and the temperatures of different components (fuel, clad and coolant) as a function of time. It was observed that during the transient the maximum clad temperature remained well below the critical temperature limit of 110 °C, and the maximum coolant temperature did not exceed the onset of nucleate boiling point of 120 °C. It is concluded that the reactor can be operated at full power level with sufficient safety margins with regard to such kind of transients.  相似文献   

15.
The pebble bed modular reactor (PBMR) plant is a promising concept for inherently safe nuclear power generation. This paper presents two dynamic models for the core of a high temperature reactor (HTR) power plant with a helium gas turbine. Both the PBMR and its power conversion unit (PCU) based on a three-shaft, closed cycle, recuperative, inter-cooled Brayton cycle have been modeled with the network simulation code Flownex.One model utilizes a core simulation already incorporated in the Flownex software package, and the other a core simulation based on multi-dimensional neutronics and thermal-hydraulics. The reactor core modeled in Flownex is a simplified model, based on a zero-dimensional point-kinetics approach, whereas the other model represents a state-of-the-art approach for the solution of the neutron diffusion equations coupled to a thermal-hydraulic part describing realistic fuel temperatures during fast transients. Both reactor models were integrated into a complete cycle, which includes a PCU modeled in Flownex.Flownex is a thermal-hydraulic network analysis code that can calculate both steady-state and transient flows. An interesting feature of the code is its ability to allow the integration of an external program into Flownex by means of a so called memory map file.The total plant models are compared with each other by calculating representative transient cases demonstrating that the coupling with external models works sufficiently. To demonstrate the features of the external program a hypothetical fast increase of reactivity was simulated.  相似文献   

16.
破口事故是压水堆最为关注的一类重要事故,其失水量与事故后果严重程度密切相关。NHR-200Ⅱ是由清华大学核能与新能源技术研究院经过多年研究和不断改进,设计的一种全功率自然循环低温供热反应堆,其设计中采用了多种先进的非能动和固有安全设计。本研究针对NHR-200Ⅱ反应堆,选取后果最为严重的控制棒引水管断裂且无法隔离事故,利用系统热工瞬态分析程序对事故过程进行了模拟和分析。结果表明,即使在最严重的破口失水事故下,NHR-200Ⅱ主回路中剩余的冷却剂始终能覆盖反应堆堆芯,并有效通过非能动余热载出系统带走堆芯热量,从而保证反应堆堆芯不会因裸露造成烧毁,这表明NHR-200Ⅱ具有很好的安全特性。  相似文献   

17.
针对钠冷快堆二回路系统的具体结构和运行特点,对中间热交换器、直流蒸汽发生器、钠缓冲罐以及泵、管道等设备和部件建立模型,采用FORTRAN语言自主编制了二回路系统热工水力瞬态分析程序SELTAC。利用中国实验快堆的停堆试验数据对所编制程序进行了初步验证。结果表明,程序计算值与试验值趋势一致,最大相对偏差不超过4.34%,吻合程度较好。将验证后的程序与一回路系统程序耦合,分析了某600 MW钠冷快堆在主热传输系统保持排热能力时的紧急停堆工况,得到了二回路系统的瞬态特性,为大型商用快堆电站的设计提供了参考。  相似文献   

18.
An analysis of the April 26, 1986 accident at the Chernobyl-4 nuclear power plant in the Soviet Union is presented. The peak calculated core power during the accident was 550 000 MWt. The analysis provides insights that further understanding of the plant behavior during the accident. The plant was modeled with the RELAP5/MOD2 computer code using information available in the open literature. RELAP5/MOD2 is an advanced computer code designed for best-estimate thermal-hydraulic analysis of transients in light water reactors. The Chernobyl-4 model included the reactor kinetics effects of fuel temperature, graphite temperature, core average void fraction, and automatic regulator control rod position. Preliminary calculations indicated the effects of recirculation pump coast down during performance of a test at the plant were not sufficient to initiate a reactor kinetics-driven power excursion. Another mechanism, or “trigger” is required. The accident simulation assumed the trigger was recirculation pump performance degradation caused by the onset of pump cavitation. Fuel disintegration caused by the power excursion probably led to rupture of pressure tubes. To further characterize the response of the Chernobyl-4 plant during severe accidents, simulations of an extended station blackout sequence with failure of all feedwater are also presented. For those simulations, RELAP5/MOD2 and SCDAP/MOD1 (an advanced best-estimate computer code for the prediction of reactor core behavior during a severe accident) were used. The simulations indicated that fuel rod melting was delayed significantly because the graphite acted as a heat sink.  相似文献   

19.
20.
It is necessary to develop PSA methodology and integrated accident management technology during low power/shutdown operations. To develop this technology, thermal-hydraulic analysis is necessarily required to access the trend of plant process parameters and operator's grace time after initiation of the accident. In this study, the thermal-hydraulic behavior in the loss of shutdown cooling system accident during low power/shutdown operations at the Korean standard nuclear power plant was analyzed using the best-estimate thermal-hydraulic analysis code, MARS2.1. The effects of operator's action and initiation of accident mitigation system, such as safety injection and gravity feed on mitigation of the accident during shutdown operations are also analyzed.When steam generators are unavailable or vent paths with large cross-sectional area are open in the accident, the core damage occurs earlier than the cases of steam generators available or vent paths with small cross-sectional area. If an operator takes an action to mitigate the accident, the accident can be mitigated considerably. To mitigate the accident, high-pressure safety injection is more effective in POS4B and gravity feed is more effective in POS5. The results of this study can contribute to the plant safety improvement because those can provide the time for an operator to take an action to mitigate the accident by providing quantitative time of core damage. The results of this study can also provide information in developing operating procedure and accident management technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号