首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Japan's Research and Development (R&D) activities on high‐performance III–V compound space solar cells are presented. Studies of new CuInGaSe2 thin‐film terrestrial solar cells for space applications are also discussed. Performance and radiation characteristics of a newly developed InGaP/GaAs/Ge triple‐junction space solar cell, including radiation response, results of a flight demonstration test of InGaP/GaAs dual‐junction solar cells and CuInGaSe2 thin‐film solar cells, and radiation response of three component sub‐cells are explained. This study confirms superior radiation tolerance of InGaP/GaAs dual‐junction cells and CuInGaSe2 thin‐film cells by space flight experiments. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
We have demonstrated self-aligned InGaP/GaAs heterojunction bipolar transistors (HBT's) with excellent dc, microwave, and noise performance. A 3×10 μm2 emitter finger device achieved a cutoff frequency of fT=66 GHz and a maximum frequency of oscillation of fmax=109 GHz. A minimum noise figure of 1.12 dB and an associated gain of 11 dB were measured at 4 GHz. These results are the highest combined fT+fmax and the lowest noise figure reported for an InGaP/GaAs HBT and are attributed to material quality and the use of self-aligned base contacts. These data clearly demonstrate the viability of InGaP/GaAs HBT's for high-speed, low-noise circuit applications  相似文献   

3.
InGaP/GaInAsN double heterojunction bipolar transistors (HBTs) with compositionally graded bases are presented which exhibit superior dc and radio frequency performance. Reducing the average base layer energy gap and optimizing the emitter-base (e-b) and base-collector (b-c) heterojunctions leads to a 100-mV reduction in the turn-on voltage compared to a baseline InGaP/GaAs process. Simultaneously grading the base layer energy band-gap results in over a 66% improvement in the dc current gain and up to a 35% increase in the unity gain cutoff frequency. DC current gains as high as 250 and cutoff frequencies of 70 GHz are demonstrated. In addition, the InGaP/GaInAsN DHBT structure significantly reduces the common emitter offset and knee voltages, as well as improves the dc current gain temperature stability relative to standard InGaP/GaAs HBTs.  相似文献   

4.
设计并生长了一种新的InGaP/GaAs/InGaP DHBT结构材料,采用在基区和集电区之间插入n+-InGaP插入层结构,以解决InGaP/GaAs/InGaP DHBT集电结导带尖峰的电子阻挡效应问题。采用气态源分子束外延(GSMBE)技术,通过优化生长条件,获得了高质量外延材料,成功地生长出带有n+-InGaP插入层结构的GaAs基InGaP/GaAs/InGaP DHBT结构材料。采用常规的湿法腐蚀工艺,研制出发射极面积为100μm×100μm的新型结构InGaP/GaAs/InGaP DHBT器件。直流特性测试的结果表明,所设计的集电结带有n+-InGaP插入层的InGaP/GaAs/InGaP DHBT器件开启电压约为0.15V,反向击穿电压达到16V,与传统的单异质结InGaP/GaAs HBT相比,反向击穿电压提高了一倍,能够满足低损耗、较高功率器件与电路制作的要求。  相似文献   

5.
六边形发射极的自对准InGaP/GaAs异质结具有优异的直流和微波性能.采用发射极面积为2μm×10μm的异质结双极型晶体管,VCE偏移电压小于150mV,膝点电压为0.5V(IC=16mA),BVCEO大于9V,BVCBO大于14V,特征频率高达92GHz,最高振荡频率达到105GHz.这些优异的性能预示着InGaP/GaAs HBT在超高速数字电路和微波功率放大领域具有广阔的应用前景.  相似文献   

6.
For the self-aligned AlGaAs/GaAs HBTs with the mesa-etched emitter, the instability of the surface states on the extrinsic base passivated by nitride is a major cause of the severe degradation of current gain. In this paper GaAs HBTs employing InGaP ledge emitter in order to passivate the surface of the extrinsic base and to reduce the surface states exhibited the considerable improvement of the current gain reliability with the activation energy of 1.97 eV and MTTF of 4.8×108 h at 140°C. However, under the strong stress conditions InGaP/GaAs HBTs also produced the considerable degradation. The possible origins were investigated.  相似文献   

7.
In this letter, a new InGaP/GaAs superlattice-emitter resonant tunneling bipolar transistor (SE-RTBT) is fabricated and demonstrated. A 5-period InGaP/GaAs superlattice is used to serve the RT route and the confinement barrier for minority carriers. Due to the large valence band discontinuity (ΔEv) at the InGaP/GaAs heterointerface, a high current gain (βmax≃220) is obtained. Furthermore, the interesting N-shaped negative-differential-resistance (NDR) phenomena resulting from RT effect are found both in the saturation and forward-active region of current-voltage (I-V) characteristics at room temperature  相似文献   

8.
The behavior of the surface recombination current was examined in InGaP/GaAs heterostructure-emitter bipolar transistors (HEBT's) with both exposed GaAs surface and InGaP passivated surface based on the emitter-size effect on current gain. The results indicate that the GaAs surface recombination current has a 1 kT-like dependence in the high current regime and a 2 kT-like dependence in the low current regime which is similar to published experimental results in AlGaAs/GaAs and InGaP/GaAs HBT's. The surface recombination current in devices with an InGaP passivation layer has an order of magnitude lower value in low current regime and more than two orders lower in high current regime than that in devices with exposed GaAs surface  相似文献   

9.
During elevated-temperature bias stress, InGaP/GaAs HBT's grown by MOCVD show a medium-term degradation in current gain of about 20%, with an activation energy of 0.64 eV. They also show a corresponding decrease in base resistance and an increase in turn-on voltage. InGaP/GaAs HBTs grown by GSMBE, however, do not show this degradation. SIMS measurements show a five times greater than GSMBE-epi hydrogen concentration of about 1019 cm-3 in the base layer of the MOCVD-grown epi. The degradation can be explained by acceptor depassivation due to hydrogen out-diffusion from the epi during stress  相似文献   

10.
报道了一种以InGaAs为基区的新结构InGaP/InGaAs/GaAs双异质结晶体管,获得了直流性能良好的器件.其共射直流增益β达到100,残余电压Voffset约为0.4V,膝点电压Vknee约为1V,击穿电压BVceo超过10V,器件的基极和集电极电流理想因子分别为nb=1.16,nc=1.11,可应用于低功耗、高功率领域.  相似文献   

11.
报道了一种以InGaAs为基区的新结构InGaP/InGaAs/GaAs双异质结晶体管,获得了直流性能良好的器件.其共射直流增益β达到100,残余电压Voffset约为0.4V,膝点电压Vknee约为1V,击穿电压BVceo超过10V,器件的基极和集电极电流理想因子分别为nb=1.16,nc=1.11,可应用于低功耗、高功率领域.  相似文献   

12.
A novel InGaP/GaAs0.92Sb0.08/GaAs double heterojunction bipolar transistor (DHBT) with low turn-on voltage has been fabricated. The turn-on voltage of the DHBT is typically 150 mV lower than that of the conventional InGaP/GaAs HBT, indicating that GaAsSb is a suitable base material for reducing the turn-on voltage of GaAs HBTs. A current gain of 50 has been obtained for the InGaP/GaAs0.92Sb0.08/GaAs DHBT. The results show that InGaP/GaAsSb/GaAs DHBTs have a great potential for reducing operating voltage and power dissipation  相似文献   

13.
In this paper, we examined the optical characteristics of InGaP/GaAs heterojunction phototransistor (HPT) directly compared with AlGaAs/GaAs HPT for the first time. Because of its inherent good electrical properties, the InGaP/GaAs HPT produced a high optical gain of about 61 at VC=3 V, IB=2 μA, for an input optical power of 1.23 μW. This is 2.5 times as high as that of the AlGaAs/GaAs HPT. In the transient response, the InGaP/GaAs HPT was a little inferior to the AlGaAs/GaAs HPT. This is due to the longer time delay caused by the photo-generated hole accumulation at the interface of heterojunction. The extended response time can be overcome by using a small load resistance in conjunction with the advantage of the superior optical gain  相似文献   

14.
In this letter, we report the first demonstration of InGaP/GaAs heterojunction bipolar transistors (HBTs) on germanium-on-insulator (GOI) substrates. We have performed physical characterization of the epitaxial layers to verify the high quality of the III-V epitaxial material grown on the GOI substrates and performed dc characterization of large-area InGaP/GaAs HBTs fabricated on the substrates. The InGaP/GaAs HBTs realized on GOI substrates were compared with identical devices grown on bulk germanium substrates and similar devices on semi-insulating GaAs substrates.  相似文献   

15.
具有AlGaAs缓变结构的InGaP/GaAs HBT性能改进分析   总被引:1,自引:0,他引:1  
对改进型结构具有零导带势垒尖峰的缓变InGaP/AlGaAs/GaAs HBT器件的直流和高频特性进行了理论探讨,并同传统突变结构的InGaP/GaAs HBT的相应性能作了比较。结果表明:在低于30 nm的一定范围内的缓变层厚度下,与突变的InGaP/GaAs HBT相比,改进型结构的InGaP/AlGaAs/GaAs HBT具有更低的offset和开启电压、更强的电流驱动能力、更好的伏-安输出特性和高频特性。  相似文献   

16.
The DC current gain dependence of InGaP/GaAs heterojunction bipolar transistors (HBTs) on subcollector and etch-stop doping is examined. Samples of InGaP/GaAs HBTs having various combinations of subcollector doping and etch-stop doping are grown, and large area 60 μm×60 (μ) HBTs are then fabricated for DC characterization. It is found that the DC current gain has a strong dependence on the doping concentration in the subcollector and the subcollector etch-stop. Maximum gain is achieved when the subcollector is doped at 6~7×10 18 cm-3 while the subcollector etch-stop is doped either above 6×1018 cm-3 (current gain/sheet resistance ratio, β/Rb=0.435 at Ic=1 mA) or below 3.5×1017 cm-3 (β/Rb=0.426~0.438 at Ic=1 mA). The data show that it is not necessary to heavily dope the subcollector etch-stop to reduce the conduction barrier and to obtain high current gain. The high current gain obtained with the low InGaP etch-stop doping concentration is attributed to the reduction of the effective energy barrier thickness due to band bending at the heterojunction between the InGaP etch-stop and the GaAs subcollector. These results show that the β/Rb of InGaP/GaAs HBTs can improve as much as 69% with the optimized doping concentration in subcollector and subcollector etch-stop  相似文献   

17.
The improvement in the emitter-base leakage current of HBTs has been investigated by the use of an InGaP emitter. InGaP/GaAs n-p-n HBT structures with high C-doped bases, grown by MOCVD, have been fabricated and these devices show Gummel plots with near ideal I-V characteristics (n/sub c/=1.00 and n/sub b/=1.09). Measured current gain remains relatively flat over five decades of collector current and its magnitude is greater than unity at collector current as low as 0.1 mu A. The characteristics of these HBTs were compared with fabricated AlGaAs/GaAs HBTs having similar device structure. The superior performance of the InGaP emitter HBT is demonstrated.<>  相似文献   

18.
19.
Excellent long term reliability InGaP/GaAs heterojunction bipolar transistors (HBT) grown by metalorganic chemical vapor deposition (MOCVD) are demonstrated. There were no device failures (T=10000 h) in a sample lot of ten devices (L=6.4 μm ×20 μm) under moderate current densities and high-temperature testing (Jc=25 kA/cm 2, Vce=2.0 V, Junction Temp =264°C). The dc current gain for large area devices (L=75 μm ×75 μm) at 1 kA/cm2 at a base sheet resistance of 240 ohms/sq (4×10 19 cm-3@700 Å) was over 100. The dc current gain before reliability testing (L=6.4 μm ×10 μm) at 0.8 kA/cm2 was 62. The dc current gain (0.8 kA/cm2) decreased to 57 after 10000 h of reliability testing. The devices showed an fT=61 GHz and fmax=103 GHz. The reliability results are the highest ever achieved for InGaP/GaAs HBT and these results indicate the great potential of InGaP/GaAs HBT for numerous low- and high-frequency microwave circuit applications. The reliability improvements are probably due to the initial low base current at low current densities which result from the low surface recombination of InGaP and the high valence band discontinuity between InGaP and GaAs  相似文献   

20.
介绍L波段、低偏置电压下工作的自对准InGaP/GaAs功率异质结双极晶体管的研制.在晶体管制作过程中采用了发射极-基极金属自对准、空气桥以及减薄等工艺改善其功率特性.功率测试结果显示:当器件工作在AB类,工作频率为2GHz,集电极偏置电压仅为3V时,尺寸为2×(3μm×15μm)×12的功率管获得了最大输出功率为23dBm,最大功率附加效率为45%,线性增益为10dB的良好性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号