首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the different electromigration (EM) behaviors of eutectic Sn-Bi solder in the solid and molten states were clarified using line-type Cu/Sn-Bi/Cu solder joints. When the eutectic Sn-Bi solder was in the solid state during the EM test, a Bi-rich layer formed at the anode side while a Sn-rich band formed at the cathode side, and the intermetallic compound (IMC) at the cathode side was thicker than that at the anode side. The growth of the Bi-rich layer exhibited a linear dependence on the time of stressing. While the actual temperature of the solder joint increased to 140°C and the solder was in a molten state or partially molten state, two separate Bi-rich layers formed at the anode side and a great many Cu6Sn5 IMC precipitates formed between the two Bi-rich layers. Also, the IMC layer at the cathode side was thinner than that at the anode side. With a current-crowding-reduced structure, the products of diffusivity and effective charge number of Bi in the eutectic Cu/Sn-Bi/Cu solder joints stressed with current density of 5 × 103 A/cm2 at 35°C, 55°C, and 75°C were calculated.  相似文献   

2.
A Cu/Sn-8Zn-3Bi/Cu structure was used to investigate the intermetallic compound (IMC) growth behavior during discontinuous electromigration under current density of 104?A/cm2 at 70°C. Cu5Zn8 IMC formed at both the anode and the cathode interfaces, and the thickness increased with the stressing time. With prolonging the current stressing time, a bulged Cu5Zn8 layer was squeezed out between the former Cu5Zn8 layer and Cu substrate in the samples to relax the excess compressive stress. Additionally, due to the back stress gradient built up by the Sn diffusion, the Zn atomic flux reacted with Cu to form Cu5Zn8 at the cathode side when the power was turned off. Finally, the total IMC thickness of the anode and the cathode under discontinuous current stressing showed a ??reversion?? in the 69?h and 310?h samples.  相似文献   

3.
The electromigration on void formation and failure mechanism of FCBGA packages under a current density of 1 × 104 A/cm2 and an environmental temperature of 150 °C was investigated. Two solder/substrate combinations of Sn3Ag1.5Cu with Cu-OSP and Cu/Ni/Au were examined. A conservative failure criterion was adopted to predict the failure of package, and SEM was used to observe in situ microstructural change and failure modes.Failure was mainly attributed to void occupation along UBM/solder interfaces by the side of cathode chip of bumps with downward electron flow. The current crowding was the cause for void initiation from the entrance corner of electron flow. Two specific void locations were identified at IMC/solder and UBM/IMC interfaces, and both can co-exist in the same specimen but in different bumps. No coupling mode of void was found. Since there is a discrepancy of diffusion rate between solder and IMC layers, current density results in more voids between them. A current density of 1 × 104 A/cm2 was found as a dominant factor that was high enough for void pattern at IMC/solder interface. However, the void formation at the UBM/IMC interface was generally induced by the UBM consumption due to the high temperature of 150 °C that dominates the void morphology crucially at UBM/IMC interface.  相似文献   

4.
Electromigration phenomena in a one-dimensional Cu/SnAg3.0Cu0.5/Cu joint were investigated with current stressing. The special effect of intermetallic compound (IMC) layers on the formation of serious electromigration damage induced by nonuniform current density distribution was discussed based on experimental results. Meanwhile, hillocks were observed both at the anode and near the cathode of the joint, and they were described as the result of diffusion of atoms and compressive stress released along grain boundaries to the relatively free surface. Moreover, the diffusion behavior of Cu at the cathode was analyzed with the electromigration equation, and the stability of Ag atoms in the solder during electromigration was evaluated with a first-principles method.  相似文献   

5.
This work investigated the microstructure evolution of Cu-cored Sn solder joints under high temperature and high current density. The Cu6Sn5 phase formed at both the Cu core/Sn interface and Cu wire/Sn interface right after reflow and grew with increasing annealing time, while the Cu3Sn phase formed and grew at the Cu/Cu6Sn5 interfaces. Intermetallic compound (IMC) growth followed a linear relationship with the square root of annealing time due to a diffusion-controlled mechanism. Under high current density, the thickness of the interfacial IMCs of the Cu core/Sn interface at the cathode side increased and the Cu core/Sn interface at the anode side exhibited an irregular and serrated morphology with prolonged current stressing time. Finite-element simulation was carried out to obtain the distribution of current density in the solder joint. Since Cu has lower resistivity, the electrical current primarily selected the Cu core as its electrical path, resulting in current crowding at the Cu core and the region between the Cu core and Cu wire. Compared with the conventional solder joint, the electromigration (EM) lifetime of the Cu-cored solder joint was much longer.  相似文献   

6.
The electromigration-induced failure of Sn95/Sb5 flip chip solder bumps was investigated. The failure of the joints was found at the cathode/chip side after current stressing with a density of 1×104 A/cm2 at 150°C for 13 sec. The growth of intermetallic compounds (IMCs) was observed at the anode side after current stressing. Voids were found near the current crowding area in the cathode/chip side, and the (Cu,Ni)6Sn5 IMC at the cathode/chip end was transformed into the Sn phase. The failure mechanism for Sn95/Sb5 flip chip solder joint is proposed in this paper.  相似文献   

7.
The electromigration that occurs in a Cu/Sn-9Zn/Cu sandwich was investigated for void formation at room temperature with 103 A/cm2. A focused ion beam revealed that voids nucleated at the intermetallic compound (IMC)/solder interface regardless of the electron flow direction. The needle-like voids initiated at the cathode Cu5Zn8/solder interface due to the outward diffusion of Zn atoms in the Zn-rich phase and expanded as a result of the surface diffusion of Sn atoms upon current stressing.  相似文献   

8.
The effects of current stressing at 104 A/cm2 on Cu/42Sn-58Bi/Cu reaction couples with a one-dimensional structure at 23°C, 50°C, and 114°C were investigated. The microstructural evolution during electromigration was examined using scanning electron microscopy. The temperature dependence of the coarsening of the Bi-rich phase, the dominant migrating entity, and hillock/whisker formation in eutectic Sn-Bi were investigated under high current density. During current stressing at 104 A/cm2, the average size of the Bi-rich phase remained the same at 23°C, increased at 50°C, and shrank at 140°C. Bi accumulated near the anode side at both high (50°C, 140°C) and low temperature (23°C). At high temperatures, both Sn and Bi diffused towards the anode side, but Bi moved ahead of Sn during current stressing. However, at low temperatures, Sn reversed its direction of migration to the cathode side. Pure Bi hillocks/whiskers and a mixed structure of Sn and Bi hillocks were extruded as a consequence of compressive stress from electromigration- induced mass flow towards the anode side.  相似文献   

9.
The effect of polarity on interfacial reactions under high-density electric current was investigated in Cu/FeNi/Sn/FeNi/Cu solder interconnects. A reverse polarity effect was found where the FeSn2 intermetallic compound (IMC) layer at the cathode grew significantly thicker than that at the anode under electric loading. Such an abnormal polarity effect was shown to result from electromigration of Fe in the direction opposite to the electron flow. At the same time, a Cu-rich layer developed next to the FeSn2 layer at the anode side. Kinetic analysis of Fe and Cu mass transport explained the differential growth of the IMCs at the two electrodes, in good agreement with the experimental data.  相似文献   

10.
The electromigration (EM) that occurs in a Cu/Sn-9Zn/Cu lamella was investigated for hillock formation at room temperature with a current density of 103 A/cm2 for up to 230 h. Hillocks and cavities grew in the middle of the bulk solder and at the cathode, respectively. The formation of hillocks was ascribed to a compressive stress resulting from the diffusion of Sn atoms driven by electromigration and Cu-Zn compound formation.  相似文献   

11.
SnPb-SnAgCu mixed solder joints with Sn-Pb soldering Sn-Ag-Cu Pb-free components are inevitably occurred in the high reliability applications. In this study, the interfacial behaviors in Sn-37Pb and Sn-3.0Ag-0.5Cu mixed solder joints was addressed and compared with Sn-37Pb solder joints and Sn-3.0Ag-0.5Cu solder joints with the influence from isothermal aging and electromigration. Considering the difference on the melting point between Sn-3.0Ag-0.5Cu and Sn-37Pb solder, two mixed solder joints: partial mixing and full mixing between Sn-Pb and Sn-Ag-Cu solders were reached with the peak reflowing temperature of 190 and 250 °C, respectively. During isothermal aging, the intermetallic compound (IMC) layer increased with aging time and its growth was diffusion controlled. There was also no obvious affect from the solder composition on IMC growth. After electromigration with the current density of 2.0 × 103 A/cm2, Sn-37Pb solder joints showed the shortest lifetime with the cracks observed at the cathode for the stressing time < 250 h. In Sn-3.0Ag-0.5Cu Pb-free solder joints, current stressing promoted the growth of IMC layer at the interfaces, but the growing rate of IMC at the anode interface was far faster than that at the cathode interface. Therefore, there existed an obvious polarity effect on IMC growth in Sn-Ag-Cu Pb-free solder joints. After Sn-37Pb was mixed with Sn-3.0Ag-0.5Cu Pb-free solder, whether the partial mixing or the full mixing between Sn-Pb and Sn-Ag-Cu can obviously depress both the crack formation at the cathode side and the IMC growth at the anode.  相似文献   

12.
在28℃.3.25A直流电下,对Cu/Sn3.0Ag0.5Cu/Cu对接无铅焊点进行原位电迁移实验,观察了通电120,168,384和504 h后焊点横截面的微观组织形貌.结果表明,电迁移初期,Cu<,6>Sn<,5>化合物遍布整个焊点截面,随时间延长,不断从阴极向阳极迁移聚集;当通电504 h后,焊点内已看不到金属间...  相似文献   

13.
The Cu pillar is a thick underbump metallurgy (UBM) structure developed to alleviate current crowding in a flip-chip solder joint under operating conditions. We present in this work an examination of the electromigration reliability and morphologies of Cu pillar flip-chip solder joints formed by joining Ti/Cu/Ni UBM with largely elongated ∼62 μm Cu onto Cu substrate pad metallization using the Sn-3Ag-0.5Cu solder alloy. Three test conditions that controlled average current densities in solder joints and ambient temperatures were considered: 10 kA/cm2 at 150°C, 10 kA/cm2 at 160°C, and 15 kA/cm2 at 125°C. Electromigration reliability of this particular solder joint turns out to be greatly enhanced compared to a conventional solder joint with a thin-film-stack UBM. Cross-sectional examinations of solder joints upon failure indicate that cracks formed in (Cu,Ni)6Sn5 or Cu6Sn5 intermetallic compounds (IMCs) near the cathode side of the solder joint. Moreover, the ~52-μm-thick Sn-Ag-Cu solder after long-term current stressing has turned into a combination of ~80% Cu-Ni-Sn IMC and ~20% Sn-rich phases, which appeared in the form of large aggregates that in general were distributed on the cathode side of the solder joint.  相似文献   

14.
The electromigration effect on interfacial reactions in Cu/90Sn-10Sb/Cu Pb-free solder joints was investigated under electric current stressing. The growth of the Cu3Sn and Cu6Sn5 intermetallic compound (IMC) layers was enhanced at the anode but inhibited at the cathode, compared with the no-current case. The growth of the IMC at the anode followed a parabolic law. Upon increasing the temperature to about 140°C, the thickness of the Cu6Sn5 IMC at the anode increased significantly. Sn3Sb2 IMC coarsened in the Cu6Sn5 IMC at the anode and in the β-Sn at the cathode. The possible mechanism of the electromigration effect is discussed.  相似文献   

15.
The effects of isothermal aging on the microstructure and shear strength of Sn37Pb/Cu solder joints were investigated. Single-lap shear solder joints of eutectic Sn37Pb solder were aged for 1–10 days at 120 °C and 170 °C, respectively, and then loaded to failure in shear with a constant loading speed of 5 × 10−3 mm/s. The growth of the interfacial Cu–Sn intermetallic compounds (IMC) layer (Cu6Sn5 + Cu3Sn) of Sn37Pb/Cu solder joints subjected to isothermal aging exhibited a linear function of the square root of aging time, indicating that the formation of Cu–Sn IMC was mainly controlled by the diffusion mechanism. And the diffusion coefficient (D) values of IMC layer were 1.07 × 10−17 and 3.72 × 10−17 m2/s for aged solder joints at 120 °C and 170 °C, respectively. Shear tests results revealed that as-reflowed solder joint had better shear strength than the aged solder joints and the shear strength of all aged solder joints decreased with increasing aging time. The presence of elongated dimple-like structures on the fracture surfaces of these as-reflowed or aged for short time solder joints were indicative of a ductile failure mode. As aging time further increased, the solder joints fractured in the mixed solder/IMC mode at the solder/IMC interface.  相似文献   

16.
The effect of electromigration (EM) on the interfacial reaction in a line-type Cu/Sn/Ni-P/Al/Ni-P/Sn/Cu interconnect was investigated at 150°C under 5.0 × 103 A/cm2. When Cu atoms were under downwind diffusion, EM enhanced the cross-solder diffusion of Cu atoms to the opposite Ni-P/Sn (anode) interface compared with the aging case, resulting in the transformation of interfacial intermetallic compound (IMC) from Ni3Sn4 into (Cu,Ni)6Sn5. However, at the Sn/Cu (cathode) interface, the interfacial IMCs remained as Cu6Sn5 (containing less than 0.2 wt.% Ni) and Cu3Sn. When Ni atoms were under downwind diffusion, only a very small quantity of Ni atoms diffused to the opposite Cu/Sn (anode) interface and the interfacial IMCs remained as Cu6Sn5 (containing less than 0.6 wt.% Ni) and Cu3Sn. EM significantly accelerated the dissolution of Ni atoms from the Ni-P and the interfacial Ni3Sn4 compared with the aging case, resulting in fast growth of Ni3P and Ni2SnP, disappearance of interfacial Ni3Sn4, and congregation of large (Ni,Cu)3Sn4 particles in the Sn solder matrix. The growth kinetics of Ni3P and Ni2SnP were significantly accelerated after the interfacial Ni3Sn4 IMC completely dissolved into the solder, but still followed the t 1/2 law.  相似文献   

17.
Sb掺杂对SnAgCu无铅焊点电迁移可靠性的影响   总被引:3,自引:1,他引:2  
向Sn3.8Ag0.7Cu无铅焊膏中添加质量分数为1%的Sb金属粉末,研究了其焊点在电流密度为0.34×104A/cm2、环境温度150℃下的电迁移行为。通电245h后,阴极处钎料基体与Cu6Sn5IMC之间出现一条平均宽度为16.9μm的裂纹,阳极界面出现凸起带,钎料基体内部也产生了裂纹。结果表明:1%Sb的添加使焊点形成了SnSb脆性相,在高电流密度和高温环境下产生裂纹,缩短了焊点寿命,降低了电迁移可靠性。  相似文献   

18.
The effect of electromigration (EM) on Sn(Cu)/Ni/Cu solder joint interfaces under current stressing of 104 A/cm2 at 160°C was studied. In the pure Sn/Ni/Cu case, the interfacial compound layer was mainly the Cu6Sn5 compound phase, which suffered serious EM-induced dissolution, eventually resulting in serious Cu-pad consumption. In the Sn-0.7Cu case, a (Cu,Ni)6Sn5 interfacial compound layer formed at the joint interface, which showed a strong resistance to EM-induced dissolution. Thus, there was no serious consumption of the Cu pad under current stressing. In the Sn-3.0Cu case, we believe that the␣massive Cu6Sn5 phase in the solder matrix eased possible EM-induced dissolution at the interfacial compound layer due to current stressing.  相似文献   

19.
Effect of electromigration on the interfacial structure of solder interconnects was examined in a Sn-Bi/Cu interconnect system. At current densities above 104 A/cm2, Bi migrated along the direction of the electron flow in the solder alloy. A continuous Bi layer was found at the solder interface on the anode side, while a Sn-rich region formed at the cathode side of the electrical connection. The presence of the Bi layer inhibited further growth of Cu-Sn intermetallic phase at the interface by acting as a diffusion barrier to the reacting species.  相似文献   

20.
为了研究电迁移过程中焊点与焊盘界面金属问化合物(IMC)的变化,在28℃下,对无铅Sn3.0Ag0.5Cu焊点进行了6.5A直流电下的电迁移实验.结果发现,通电144h后,阳极侧IMC层变厚,平均达到10.12 μm;阴极侧IMC层大部分区域变薄至0.86μm,局部出现Cu焊盘的溶解消失,但在界面边缘处出现Cu3Sn5...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号