共查询到20条相似文献,搜索用时 46 毫秒
1.
《Acta Materialia》2008,56(19):5514-5523
Solder joints of Cu/Sn–3.5Ag were prepared using Cu foil or electroplated Cu films with or without SPS additive. With a high level of SPS in the Cu electroplating bath, voids tended to localize at the Cu/Cu3Sn interface during subsequent aging at 150 °C, which was highly detrimental to the drop impact resistance of the solder joints. In situ Auger electron spectroscopy of fractured joints revealed S segregation on the Cu/Cu3Sn interface and void surfaces, suggesting that segregation of S to the Cu/Cu3Sn interface lowered interface energy and thereby the free energy barrier for Kirkendall void nucleation. Once nucleated, voids can grow by local tensile stress, originating from residual stress in the film and/or the Kirkendall effect. Vacancy annihilation at the Cu/Cu3Sn interface can induce tensile stress which drives the Kirkendall void growth. 相似文献
2.
Asit Kumar Gain Tama Fouzder Y.C. Chan Ahmed Sharif Winco K.C. Yung 《Journal of Alloys and Compounds》2010,489(2):678-684
The formation of intermetallic compounds and the shear strength of Sn–Zn–Bi solder alloys with various (0, 1, 3, 5 and 7 wt%) weight percentages of Sn–Ag–Cu were investigated on Au/Ni metallized Cu pads depending on the number of reflow cycles. In Sn–Zn–Bi solder joints, scallop-shaped AuZn3 intermetallic compound (IMC) particles were found at the interfaces and in the solder ball regions, fine Bi- and needle-shaped Zn-rich phase were observed in the Sn matrix. After Sn–Ag–Cu additions, an additional Ag–Zn intermetallic compound layer was adhered to the top surface of the AuZn3 layer at the interface and fine spherical-shaped AgZn3 intermetallic compound particles were detected in the solder ball regions together with Bi- and Zn-rich phase volumes. After the addition of Sn–Ag–Cu, the shear strength of Sn–Zn–Bi solder joints increased due to the formation of the fine AgZn3 intermetallic compound particles. The shear strengths of Sn–Zn–Bi and Sn–Zn–Bi/7 wt% Sn–Ag–Cu solder joints after one reflow cycle were about 44.5 and 53.1 MPa, respectively and their shear strengths after eight reflow cycles were about 43.4 and 51.6 MPa, respectively. 相似文献
3.
《Science & Technology of Welding & Joining》2013,18(8):781-790
AbstractThis study investigates the influence of 0–1˙5 wt-%Cu addition on the microstructure and the intermetallic compound (IMC) formation of the as soldered Sn–3Ag–1˙5Sb–xCu (wt-%) solders and following thermal storage at 150°C for 0, 25, 200 and 600 h, with the intention of identifying the optimum Cu addition for industrial applications. The experimental results show that the melting point of Sn–3Ag–1˙5Sb–xCu solder decreases with Cu addition. For Cu additions of 1˙0 wt-% or higher, an IMC of Cu6Sn5 particles is dispersed throughout the matrix, resulting in a dispersion strengthening effect, and its size increases with the levels of Cu addition increasing. The coarsened long strip like Cu6Sn5 with a length of more than 100 μm growing from the upper interface of IMC layer into the solder matrix is observed in the solder with 1˙5 wt-%Cu addition after thermal storage. Cu6Sn5 grains in the IMC layer develop the ripening grains with a more hexagonal or polygonal shape and smooth edged flat surfaces instead of scallop shape. Additionally, the microhardness of each solder increases with Cu addition and decreases with increasing time of thermal storage at 150°C. 相似文献
4.
《Intermetallics》2014
This study focuses on the correlation between high-speed impact tests and the interfacial reaction in Sn-3.0Ag-0.5Cu-0.1Ni/Cu (wt%) and Sn-3.0Ag-0.5Cu-0.1Ni/Cu-15Zn solder joints. Adding Ni into the Sn–Ag–Cu solder alters the interfacial morphology from scallop type to layer type and exhibits high shear strength after reflow in both solder joints. However, the shear strength of Sn-3.0Ag-0.5Cu-0.1Ni/Cu solder joints degrades significantly after thermal aging at 150 °C for 500 h. It is notable that Sn-3.0Ag-0.5Cu-0.1Ni/Cu-15Zn solder joints still present higher shear strength after aging at 150 °C. The weakened shear strength in Sn-3.0Ag-0.5Cu-0.1Ni/Cu solder joints is due to stress accumulation in the interfacial (Cu,Ni)6Sn5 compound induced by the phase transformation from a high-temperature hexagonal structure (η-Cu6Sn5) to a low-temperature monoclinic structure (η'-Cu6Sn5). However, doping small amounts of Zn into (Cu,Ni)6(Sn,Zn)5 can inhibit the phase transformation during thermal aging and maintain strong shear strength. These experiments demonstrate that Sn-3.0Ag-0.5Cu-0.1Ni/Cu-15Zn solder joints can act as a stable connection in the micro-electronic packaging of most electronic products at their average working temperatures. 相似文献
5.
6.
A solder is developed, which does not contain harmful components such as lead and shows super performance properties, at the same time the processing behaviour of the solder remains unchanged. 相似文献
7.
《Acta Materialia》2002,50(17):4315-4324
8.
《稀有金属(英文版)》2017,(3)
Among the lead-free solder materials,Sn-AgCu alloys have many advantages,such as good wetting property,superior interfacial properties and high creep resistance.In this article,the organization and welding performance of Sn-Ag-Cu material were investigated.The surface morphology of the two alloys was observed by stereoscopic microscope and scanning electron microscope(SEM).Chemical constitution was examined by X-ray energy-dispersive spectroscopy(EDS).The mechanical properties of Sn-Ag-Cu solder were evaluated systematically compared with those of Sn-Cu solder.The results show that Sn-Ag-Cu solder based on different solder pads has different welding properties.The thickness of intermetallic compound(IMC) at the interface increases with aging time.For the gold-plated pads,there are a large number of IMC graphic,and in the welding interface,it can reduce the reliability of electrical connection.The Sn-AgCu solder joints show a superior mechanical property over the traditional Sn-Cu solder.The number of dimples decreases and that of cavities increases for Sn-Cu0.7 alloy and the fracture surfaces of Sn-Ag3.0-Cu0.5 alloy have many small size dimples which are homogeneously distributed. 相似文献
9.
《Science & Technology of Welding & Joining》2013,18(3):353-360
AbstractIn this study, various amounts of Ni particles were added in situ to Sn–3·5 wt-%Ag lead free solder to form new composite solders. Copper substrates were then dipped into these solders and aged at 150°C for 0, 25, 225, or 1000 h. The microstructure and microhardness of the as solidified solder and the aged solder/copper couples were investigated. Experimental results revealed that the addition of Ni particles increased the microhardness of the composite solder. Ni additions of less than 3 wt-% yielded a microstructure of β-Sn grains surrounded by a eutectic mixture of Ag3Sn and a Sn rich matrix. An intermetallic compound of Ni3Sn4 particles was dispersed throughout the eutectic. For 5 wt-%Ni addition, the Ni3Sn4 phase and the remaining Ni particles were agglomerated. In the case of copper substrate dipped with a thick layer of composite solder, water quenched and then aged at 150°C, the induced (Ni, Cu)3Sn4 particles coarsened and agglomerated. Additionally, the intermetallic (Cu, Ni)6Sn5 compound layer formed at the solder/Cu interface thickened with increasing Ni content. 相似文献
10.
The microstructure and corrosion properties of Ti7CuxSn (x?=?0–5?wt-%) alloys after solution treatment have been investigated. The alloys were solution-treated (ST) at 1000°C for 2?h, followed by quenching in water to room temperature. It was found that the microstructure of the ST Ti7Cu alloy had only a martensite structure, and that addition of Sn could refine the microstructure of Ti7CuxSn alloy. Notably, the pseudo dendritic α-Ti phase was formed in ST Ti7Cu5Sn alloys. Potentiodynamic polarisation curves and electrochemical impedance spectroscopy data demonstrated that adding Sn improved the electrochemical corrosion behaviour of the Ti7CuxSn alloy. 相似文献
11.
Tomasz Gancarz Janusz Pstrus Katarzyna Berent 《Science & Technology of Welding & Joining》2018,23(7):558-567
This work shows the effect on the soldering process of the addition of Ag and Cu to Sn–Zn alloys. Soldering of Al/Cu and Al/Al joints was performed for a time of 3?min, at a temperature of 250°C, with the use of flux. Aging was carried out at 170°C for Al/Cu and Al/Al joints for 1 and 10 days. During the aging process, intermetallic layers grew at the interface of the Al/Cu joint at the Cu substrate. Intermetallic layers were not observed during wetting of Al/Al joints. On the contrary, dissolution of the Al substrate and migration of Al-rich particles into the bulk of the solder were observed. The experiment was designed to demonstrate the effect of Ag and Cu addition on the dissolution of Al substrate during the soldering and aging processes. In the solder alloys, small precipitates of AgZn3 and Cu5Zn8 were observed. 相似文献
12.
SHEN Jun LIU Yongchang Han Yajing GAO Houxiu 《稀有金属(英文版)》2006,25(4):365-370
A lead-free Sn-3.5Ag solder was prepared by rapid solidification technology. The high solidification rate, obtained by rapid cooling, promotes nucleation, and suppresses the growth of Ag3Sn intermetallic compounds (IMCs) in Ag-rich zone, yielding fine Ag3Sn nanoparticulates with spherical morphology in the matrix of the solder. The large amount of tough homogeneously-dispersed IMCs helps to improve the surface area per unit volume and obstructs the dislocation lines passing through the solder, which fits with the dispersion-strengthening theory. Hence, the rapidly-solidified Sn-3.5Ag solder exhibits a higher rnicrohardness when compared with a slowly-solidified Sn-3.5Ag solder. 相似文献
13.
Effects of Co nanoparticle additions to Sn–3.8Ag–0.7Cu on the structure of solder/copper interface have been studied after reflow and high temperature ageing (150 °C, up to 1008 h). Results show that the Co nanoparticles substantially suppress the growth of Cu3Sn but enhance Cu6Sn5 growth. Cobalt nanoparticles reduce interdiffusion coefficient in Cu3Sn. It is suggested that the Co nanoparticles undergo surface dissolution during reflow and exert their influence, at least partially, through alloying effect. 相似文献
14.
《稀有金属(英文版)》2015,(11)
Effects of Ni and B additions on the microstructure and growth behavior of the intermetallic compound(IMC) of Sn–1.0Ag–0.5Cu alloys(SAC105) were investigated in this study. Results show that microadditions of Ni and B result in volume fraction of primary Sn increasing and the grain size decreasing observably. It is found that a large number of fine reinforcement particles with network-like shape are found in the solder, and the thickness of interfacial IMC layer in the solder joint is grew less than that of SAC105 with longer aging time. Shear test results reveal that as-soldered solder joints of microalloyed SAC105 have better shear strength than that of SAC105 solder alloy. 相似文献
15.
《Acta Materialia》2004,52(9):2541-2547
There are no previous phase equilibria studies of the Sn–Ag–Ni ternary system, even though the phase equilibria information is important for the electronic industry. The isothermal section of the Sn–Ag–Ni ternary system at 240 °C has been determined in this study both by experimental examination and thermodynamic calculation. Experimental results show no existence of ternary compounds in the Sn–Ag–Ni system, and all the constituent binary compounds have very limited solubilities of the ternary elements. The binary Ni3Sn2 phase is very stable and is in equilibrium with most of the phases, Ag3Sn, ζ-Ag4Sn, Ag, Ni3Sn4 and Ni3Sn phases. A preliminary thermodynamic model of the ternary system is developed based on the models of the three binary constituent systems without introducing any ternary interaction parameters. This ternary thermodynamic model is used with a commercial software Pandat to calculate the Sn–Ag–Ni 240 °C isothermal section. The phase relationships determined by calculation are consistent with those determined experimentally. Besides phase equilibria determination, the interfacial reactions between the Sn–Ag alloys with Ni substrate are investigated at 240, 300 and 400 °C, respectively. It is found that the phase formations in the Sn–3.5wt%Ag/Ni couples are very similar to those in the Sn/Ni couples. 相似文献
16.
《Science & Technology of Welding & Joining》2013,18(6):555-559
AbstractThe present work investigates the effects of adding a small amount of Cu to Sn–3Ag–1·5Sb solders. The present results indicate that adding 0·5 and 1·0 wt-%Cu to Sn–3Ag–1·5Sb solders causes the liquidus temperature to decrease from its original value of 233·4°C to 231·6°C and to 231·4°C, respectively. Furthermore, it is noted that the addition of 1·0 wt-%Cu reduces the difference between the liquidus and solidus temperatures. It is shown that the added Cu reacts with the Sn content of the solder to form Cu6Sn5 particles in the β-Sn matrix, which are distributed non-uniformly since the Cu content is low. The experimental results also reveal that the growth rate of the solder joint interfacial intermetallic compound layers increases at higher levels of Cu addition. Finally, it is established that adding Cu to the Sn–3Ag–1·5Sb solder not only improves the adhesive strength of the solder joints, but also reduces the rate of degradation of the adhesive strength of the joints during thermal storage. 相似文献
17.
《Journal of Materials Processing Technology》2014,214(1):13-20
A comparative study on the microstructures of Sn–Ag–Cu alloy ingots grown by ultrasound-assisted solidification was carried out with a specific focus on the limits on the ultrasonic processing depth and time imposed by the cooling rate during the melt solidification. During air-cooling, increasing the ultrasonic power reduced the undercooling temperature and increased the solidification time, leading to β-Sn phase fragmentation from a dendritic shape into a circular equiaxed shape. The grain size was decreased from approximately 300 μm to 20 μm. When the cooling rate was increased from 4 °C/s in air to 20 °C/s in water, the macro-undercooling temperature was more greatly reduced by an increase in ultrasonic power, but the solidification time seemed to change only slightly because only a limited period for ultrasonic processing was permitted in the melt. Under both cooling rates, the microstructures were inhomogeneous along the processing depth. The functional depth and period for ultrasonic cavitation and acoustic steaming contributed to the differences in the solidification microstructures. 相似文献
18.
The surface crack nucleation of Sn–3.0Ag and Sn–0.5Cu solder alloys has been examined by performing sustained tensile-loading tests in 0.9 mass% NaCl solution at room temperature. For Sn–3.0Ag alloy, many cracks nucleate and propagate on the side surface of the specimen, similarly to Sn–3.0Ag–0.5Cu alloy reported previously. For Sn–0.5Cu alloy, such cracks are not observed, and ordinary creep deformation occurs in the solution. The effect of sustained applied stress, i.e., creep, on the dissolution of ions is smaller for Sn–0.5Cu alloy than for Sn–3.0Ag alloy. The present results suggest that there are differences in the susceptibility to cracking under applied stress in a solution, i.e., creep corrosion cracking, among lead-free solder alloys. 相似文献
19.
The effects of rapid solidification on the microstructure and melting behavior of the Sn–8Zn–3Bi alloy were studied. The evolution of the microstructural characteristics of the solder/Cu joint after an isothermal aging at 150 °C was also analyzed to evaluate the interconnect reliability. Results showed that the Bi in Sn–8Zn–3Bi solder alloy completely dissolved in the Sn matrix with a dendritic structure after rapid solidification. Compared with as-solidified Sn–8Zn–3Bi solder alloy, the melting temperature of the rapid solidified alloy rose to close to that of the Sn–Zn eutectic alloy due to the extreme dissolution of Bi in Sn matrix. Meanwhile, the adverse effect on melting behavior due to Bi addition was decreased significantly. The interfacial intermetallic compound (IMC) layer of the solder/Cu joint was more compact and uniform. Rapid solidification process obviously depressed the formation and growth of the interfacial IMC during the high-temperature aging and improved the high-temperature stability of the Sn–8Zn–3Bi solder/Cu joint. 相似文献
20.
A comparative investigation on the wettability and tensile strength of a Sn–2Ag, a Sn–40Bi and the traditional eutectic Sn–Pb solder alloys was carried out. The wettability is represented by thickness of covered layer (TCL) and spread area (SA) while the mechanical behaviour by the ultimate tensile strength (UTS). It is shown that the TCL of studied alloys decreased with the increase in the dipping temperature. It is also shown that TCL and SA have opposite behaviour with respect to the cooling rate. The Sn–Bi solder alloy has lower SA when compared with those of the Sn–Ag solder when similar cooling rates are considered. The Sn–Bi solder exhibits the best UTS/SA combination for dendritic spacings between 25 and 27?µm, associated with cooling rates ~2°C?s?1, 2× lower than those of the Sn–Ag alloy. Besides, the Sn–Bi alloy has shown SA >70~80% associated with higher UTS (~80?MPa) as compared with the other alloys examined. 相似文献