首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
21世纪以来,面对常规能源日益枯竭、环境恶化的局面,各国将目光转向可再生能源。海洋潮流能因为优越的可再生性、环保性及巨大的贮藏量而成为重点研究对象。至2013年,海洋潮流能利用在技术上取得了长足的进步,而且发展十分迅速,新概念、新技术和新装置层出不穷。本文从工作原理、技术特征、实验及应用情况等方面对其中具有代表性的潮流能发电装置的模型及实型作了综述和评价,通过对比分析能量转换装置和载体形式的技术特点,指出了当前潮流能开发中存在的主要问题及未来的发展趋势。  相似文献   

3.
Periodic changes of water levels, and associated tidal currents, are due to the gravitational attraction forces between the Earth, the Sun and the Moon. These changes can be transformed to a renewable energy resource called Tidal Current Energy. A number of resource quantization and demonstration studies have been performed throughout the world and it is believed that offshore ocean energy sector will benefit from this emerging technology. In this study, a set of basic definitions which are relevant to this technology are presented with an overview on the main tidal turbine schemes and the mooring methods that in use. A review of the current development and their fields of applications are outlined. The Blade Element Momentum BEM method and the Computational Fluid Dynamics CFD are discussed. The last section highlights the importance of this technology and its applicability in Malaysia. Other renewable energy resources in Malaysia are highlighted and discussed as well.  相似文献   

4.
Interest in renewable energy in Iran has increased continually over the past decade. Iran has an excellent hydro power energy resource and the use of this resource will assist in the development of a sustainable energy future. Iran – with its many narrow channels and significant tidal range – might be expected to have considerable potential for tidal current power generation. The Khowr-e Musa Bay is a large coastal embayment on the south-western coast of Iran in which the peak tidal currents exceed 2 m/s. It is therefore a promising site for tidal stream power. The assessment employed a statistical method, for estimating tidal current energy resource at the selected site, during one lunar month (since 6 November 1996 to 7 December 1996). With the introduction of constraints and limitations, the technical, practical, accessible and viable tidal current energy resources were obtained.  相似文献   

5.
Renewable energy is a cornerstone of German climate change policies. Germany has adopted particularly ambitious renewable energy targets, and is now implementing an Energiewende – a transition to a nuclear-free and low-carbon energy system. The transition could be eased through European cooperation. This article investigates the economic, political, environmental and technological factors that act as drivers and barriers to renewable energy cooperation between Germany and Norway. The article finds that German actors see Norwegian electricity as a means for enhancing the stability of their electricity system as Germany shifts to a greater reliance on renewables. In Norway the picture is more mixed. Norwegian state-owned electricity producers and grid operators are interested in cooperation largely out of profit motives, but expect Germany to create a favorable environment for investors. Energy-intensive industries and consumers on the other hand, are afraid that more electricity cooperation with Germany will raise electricity prices. The Norwegian environmental movement is split on the issue. Parts of the movement see renewable energy cooperation as an important step towards a European low-carbon energy future. Nature and outdoor organizations, however, argue that new renewable energy infrastructure, including pumped-storage hydropower, will result in major environmental impacts. If cooperation is to be achieved, these economic and environmental concerns will have to be taken seriously.  相似文献   

6.
Interest in renewable energy in Ireland has increased continually over the past decade. This interest is due primarily to security of supply issues and the effects of climate change. Ireland imports over 90% of its primary energy consumption, mostly in the form of fossil fuels. The exploitation of Ireland's vast indigenous renewable energy resources is required in order to reduce this over-dependence on fossil fuel imports to meet energy demand. Various targets have been set by the Irish government to incorporate renewable energy technologies into Ireland's energy market. As a result of these targets, the development in wind energy has increased substantially over the past decade; however this method of energy extraction is intermittent and unpredictable. Ireland has an excellent tidal current energy resource and the use of this resource will assist in the development of a sustainable energy future. Energy extraction using tidal current energy technologies offers a vast and predictable energy resource. This paper reviews the currently accepted tidal current energy resource assessment for Ireland. This assessment was compiled by Sustainable Energy Ireland in a report in 2004. The assessment employed a 2-dimensional numerical model of the tidal current velocities around Ireland, and from this numerical model the theoretical tidal current energy resource was identified. With the introduction of constraints and limitations, the technical, practical, accessible and viable tidal current energy resources were obtained. The paper discusses why the assessment needs updating including the effect on the assessment of the current stage of development of tidal current turbines and their deployment technology.  相似文献   

7.
The continued increase in the demand for energy, growing recognition of climate change impacts, high oil and gas prices and the rapid depletion of fossil fuel reserves have led to an increased interest in the mass generation of electricity from renewable sources. Traditionally, this has been pursed through riverine hydropower plants, with onshore wind systems growing steadily in popularity and importance over the years. Other renewable energy resources, which were previously not economically attractive or technically feasible for large scale exploitation, are now being considered to form a significant part of the energy mix. Amongst these, marine and in particular, tidal energy resource has become a serious candidate for undergoing mass exploitation in the near future, particularly in places with a tidal range of 4 m or more. Tidal renewable energy systems are designed to extract the kinetic or potential energy flow and convert it into electricity. This can be achieved by placing tidal stream turbines in the path of high speed tidal currents or through tidal range schemes, where low head turbines are encapsulated in impoundment structures, much like in low head riverine hydropower schemes. It is thought that these systems, when implemented at scales required to generate substantial amounts of electricity, have the potential to significantly alter the tidal flow characteristics, which could have knock-on impacts on the hydro-environment. This review gathers together knowledge from different research areas to facilitate an evaluation of the potential hydro-environmental impacts of tidal renewable energy systems, with a particular focus on water quality. It highlights the relevance of hydro-environmental modelling in assessing potential impacts of proposed schemes and identifies areas where further research is needed. A case study is presented of recent modelling studies undertaken for the Severn Estuary.  相似文献   

8.
An overview of ocean renewable energy resources in Korea   总被引:2,自引:0,他引:2  
Korea relies on imported fossil fuels to meet its energy consumption demands. As such, there is a need to investigate alternative energy resources such as renewable energy. In this paper, assessments of the potential of various ocean renewable energy resources in the sea around Korea; potential sources of energy including wave energy, tidal energy, tidal current energy and ocean thermal energy. Tidal energy and tidal current energy are likely to play an important role in meeting the future energy needs of Korea, whereas the potentials of wave energy and ocean thermal energy for the same are relatively low. The level of technical development and the renewable energy market in Korea is currently in an early stage. The government will have to be more aggressive in the promotion of renewable energy to achieve sustainable development in Korea.  相似文献   

9.
Alfred Voss 《Energy》1979,4(5):823-831
A quantitative estimation of the energy potential of ocean surface waves, ocean currents and tides and a review of the techniques for utilizing these renewable energy sources, their present state of development and their economic and environmental aspects are presented. The potential of wave power, which is in the order of 1–10 TW, could become a significant source of energy in regions of the world with favorable wave conditions, such as the United Kingdom and Japan. All wave-power schemes investigated today are in an early stage of development, and require more research to become commercially available. The prospects for utilizing ocean currents are relatively unattractive due to the small resource base and the possible environmental effects. Although tidal mills have been used since the eleventh century, today only one sizable tidal power plant has been built, the 240 MWe Rance Tidal Power Station in France. The overall potential of tidal energy is about 3 TW, but only in certain locations of the world do the natural conditions promise technical and economic viability.  相似文献   

10.
Several African countries in the Western Indian Ocean (WIO) endure insufficiencies in the power sector, including both generation and distribution. One important step towards increasing energy security and availability is to intensify the use of renewable energy sources. The access to cost-efficient hydropower is low in coastal and island regions and combinations of different renewable energy sources will play an increasingly important role. In this study the physical preconditions for renewable ocean energy are investigated, considering the specific context of the WIO countries. Global-level resource assessments and oceanographic literature and data have been compiled in an analysis of the match between technology-specific requirements for ocean energy technologies (wave power, ocean thermal energy conversion (OTEC), tidal barrages, tidal current turbines, and ocean current power) and the physical resources in 13 WIO regions Kenya, Seychelles, Northern Tanzania and Zanzibar, Southern Tanzania, Comoros and Mayotte, Northern-, Central-, and Southern Mozambique, Western-, Eastern-, and Southern Madagascar, Réunion, and Mauritius. The results show high potential for wave power over vast coastal stretches in southern parts of the WIO and high potential for OTEC at specific locations in Mozambique, Comoros, Réunion, and Mauritius. The potential for tidal power and ocean current power is more restricted but may be of interest at some locations. The findings are discussed in relation to currently used electricity sources and the potential for solar photovoltaic and wind power. Temporal variations in resource intensity as well as the differences between small-scale and large-scale applications are considered.  相似文献   

11.
The marine renewable energy industry is expanding globally in response to increased energy demands and the desire to curtail greenhouse gas emissions. Within the UK, Wales has the potential for the development of diverse marine renewable technologies, with a strong tidal range resource, areas of high tidal current energy, and a spatially limited wave energy resource. Targets have been set by the Welsh Government to increase the contribution of marine renewable energy to Wales' electricity generation, and the recent introduction of demonstration zones for tidal and wave energy aims to facilitate developers in device deployment. However, uncertainties remain about the potential impacts of devices, particularly for array scale deployments, planned at several sites, and for the extensive structures required to capture the tidal range resource. Here we review present knowledge of potential impacts, including physical, ecological and societal dimensions, and outline research priorities to provide a scientific basis on which to base decisions influencing the trajectory of Welsh marine renewable energy development.  相似文献   

12.
Tidal energy has the potential to play a key role in meeting renewable energy targets set out by the United Kingdom (UK) government and devolved administrations. Attention has been drawn to this resource as a number of locations with high tidal current velocity have recently been leased by the Crown Estate for commercial development. Although tides are periodic and predictable, there are times when the current velocity is too low for any power generation. However, it has been proposed that a portfolio of diverse sites located around the UK will deliver a firm aggregate output due to the relative phasing of the tidal signal around the coast. This paper analyses whether firm tidal power is feasible with ‘first generation’ tidal current generators suitable for relatively shallow water, high velocity sites. This is achieved through development of realistic scenarios of tidal current energy industry development. These scenarios incorporate constraints relating to assessment of the economically harvestable resource, tidal technology potential and the practical limits to energy extraction dictated by environmental response and spatial availability of resource. The final scenario is capable of generating 17 TWh/year with an effective installed capacity of 7.8 GW, at an average capacity factor of 29.9% from 7 major locations. However, it is concluded that there is insufficient diversity between sites suitable for first generation tidal current energy schemes for a portfolio approach to deliver firm power generation.  相似文献   

13.
14.
Wave–current interaction (WCI) processes can potentially alter tidal currents, and consequently affect the tidal stream resource at wave exposed sites. In this research, a high resolution coupled wave-tide model of a proposed tidal stream array has been developed. We investigated the effect of WCI processes on the tidal resource of the site for typical dominant wave scenarios of the region. We have implemented a simplified method to include the effect of waves on bottom friction. The results show that as a consequence of the combined effects of the wave radiation stresses and enhanced bottom friction, the tidal energy resource can be reduced by up to 20% and 15%, for extreme and mean winter wave scenarios, respectively. Whilst this study assessed the impact for a site relatively exposed to waves, the magnitude of this effect is variable depending on the wave climate of a region, and is expected to be different, particularly, in sites which are more exposed to waves. Such effects can be investigated in detail in future studies using a similar procedure to that presented here. It was also shown that the wind generated currents due to wind shear stress can alter the distribution of this effect.  相似文献   

15.
A tidal stream energy resource assessment can be achieved through direct measurements of tidal elevations or flow velocities, theoretical formulas, and numerical models. This paper first described the development of renewable energy in China. Then, the tidal stream energy resource in the Qiantang River Estuary was assessed. The present work established a 2D numerical model for calculating the power density in the estuary and validated it with in situ water level, tidal current, and suspended sediment concentration measurements. Three possible sites found near the Hangzhou Bay Bridge were selected for detailed resource assessment. The results indicated that if only 50 turbines are deployed to each site, the tidal stream energy output by all turbines would be 7.5?GWh/year. Finally, building a tidal stream power generation device into an existing bridge structure was proposed at the Qiantang River Estuary.  相似文献   

16.
The overall objective of this work is to identify the effects of climate change on the Norwegian energy system towards 2050. Changes in the future wind- and hydro-power resource potential, and changes in the heating and cooling demand are analysed to map the effects of climate change. The impact of climate change is evaluated with an energy system model, the MARKAL Norway model, to analyse the future cost optimal energy system. Ten climate experiments, based on five different global models and six emission scenarios, are used to cover the range of possible future climate scenarios and of these three experiments are used for detailed analyses. This study indicate that in Norway, climate change will reduce the heating demand, increase the cooling demand, have a limited impact on the wind power potential, and increase the hydro-power potential. The reduction of heating demand will be significantly higher than the increase of cooling demand, and thus the possible total direct consequence of climate change will be reduced energy system costs and lower electricity production costs. The investments in offshore wind and tidal power will be reduced and electric based vehicles will be profitable earlier.  相似文献   

17.
The Ría de Muros is a large coastal embayment on the north-western coast of Spain in which the peak tidal currents exceed 2 m/s. It is therefore a promising site for tidal stream power. The key point when assessing this resource is the accurate estimation of the tidal currents. In this work a finite difference numerical model is used for this purpose. The model solves the vertically integrated Navier–Stokes hydrodynamics and transport equations. It is validated with in situ velocity measurements performed by means of an acoustic Doppler current profiler (ADCP). Thereafter the tidal flow velocities and the corresponding power densities are computed. The largest values are found in a section of the inner ria, in which two points are selected for a detailed assessment of the resource. The model is then run to compute the tidal stream and the corresponding power density at these points during a 14-day period, so as to cover the spring–neap cycle. The power density curve thus obtained is numerically integrated to compute the annual energy output that can be obtained by a tidal stream power plant at each location.  相似文献   

18.
Tidal hydrokinetic power generation involves the conversion of the kinetic power in swiftly moving tidal currents to renewable electricity. Resource assessment is critical to understand the tidal hydrokinetic potential, but is complicated by a number of factors, including far-field effects. These are changes to the tidal regime caused by the increased resistance to flow as power is extracted from a channel network. This study addresses far-field effects in four prototypical channel networks: multiply-connected flow around an island, a branching network in which the flow bifurcates but does not converge downstream, and a network with multiple constrictions in series. These networks are modelled as one-dimensional channels with hydrokinetic power extraction in high current constrictions. Changes to tides, transport, frictional power dissipation, and kinetic power density are quantified for a range of extraction options. Depending on the type of network, the tidal regime may be either locally augmented or reduced by kinetic power extraction. The changes to kinetic power density throughout the network have important implications for resource assessment, particularly for networks with multiple extraction sites. Results suggest that existing analytical methods tend to over- or under-estimate the hydrokinetic resource because they do not allow for changes to the tidal forcing as a consequence of extraction. In general, site-specific numerical modelling is required to quantitatively predict far-field extraction effects and assess the hydrokinetic resource.  相似文献   

19.
A radical decarbonization pathway for the Norwegian society towards 2050 is presented. The paper focuses on the role of hydrogen in the transition, when present Norwegian petroleum export is gradually phased out. The study is in line with EU initiatives to secure cooperation opportunities with neighbouring countries to establish an international hydrogen market. Three analytical perspectives are combined. The first uses energy models to investigate the role of hydrogen in an energy and power market perspective, without considering hydrogen export. The second, uses an economic equilibrium model to examine the potential role of hydrogen export in value creation. The third analysis is a socio-technical case study on the drivers and barriers for hydrogen production in Norway. Main conclusions are that access to renewable power and hydrogen are prerequisites for decarbonization of transport and industrial sectors in Norway, and that hydrogen is a key to maintain a high level of economic activity. Structural changes in the economy, impacts of new technologies, and key enablers and barriers in this transition are discussed.  相似文献   

20.
In European countries, retailers are obliged to disclose the energy source and the related environmental impacts of their portfolio over the preceding year. The electricity supplied in the Dutch retail market is presented as renewable energy for 34%, but this relatively high share is for 69% based on certificates (Guarantees of Origin) which are imported from in particular Norway. The certificates are used to sell green electricity to consumers. The premium for green electricity which is actually paid by Dutch consumers is no more than a few percentages of the retail price. The low level of this premium is related to the abundant supply of certificates at low marginal costs from Norway. This also means that the premium for green electricity is too low to give an incentive for investments in new capacity. Hence, the current labelling system for renewable electricity is mainly valuable, besides being an instrument for tracking and tracing of renewable energy, as a marketing instrument for electricity retailers. The effectiveness of Guarantees of Origin as a policy instrument to foster renewable electricity sources is weak. This effectiveness can be raised by implementing restrictions on the international trade or the issuance of new certificates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号