首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study on humidifiers for polymer electrolyte membrane (PEM) fuel cell application, the experimental outcome of two air-to-air planar membrane humidifiers with three different internal flow patterns including cross, parallel and counter flows are investigated under isothermal and insulated boundary conditions. At all temperatures and flow rates, the conditions of higher performance, corresponding to highest water recovery ratio (WRR) and lowest dew point approach temperatures (DPAT), are encountered in the counter flow case, in contrary to the cross flow configuration. The insulation condition with dry inlet temperature at 30 °C and wet inlet temperature at 60 °C has a higher WRR index compared to isothermal condition at 60 °C but is lower than isothermal condition at 30 °C. The DPAT in humidifier with insulation condition is approximately equal to that obtained in isothermal condition at 60 °C but is much higher than what results in isothermal condition at 30 °C. It can be deduced that the temperature of the wet side inlet plays a key role in the humidifier performance.  相似文献   

2.
In this paper, a numerical model using ANSYS Fluent for a minichannel cold plate is developed for water-cooled LiFePO4 battery. The temperature and velocity distributions are investigated using experimental and computational approach at different C-rates and boundary conditions (BCs). In this regard, a battery thermal management system (BTMS) with water cooling is designed and developed for a pouch-type LiFePO4 battery using dual cold plates placed one on top and the other at the bottom of a battery. For these tasks, the battery is discharged at high discharge rates of 3C (60?A) and 4C (80?A) and with various BCs of 5°C, 15°C, and 25°C with water cooling in order to provide quantitative data regarding the thermal behavior of lithium-ion batteries. Computationally, a high-fidelity computational fluid dynamics (CFD) model was also developed for a minichannel cold plate, and the simulated data are then validated with the experimental data for temperature profiles. The present results show that increased discharge rates (between 3C and 4C) and increased operating temperature or bath temperature (between 5°C, 15°C, and 25°C) result in increased temperature at cold plates as experimentally measured. Furthermore, the sensors nearest the electrodes (anode and cathode) measured the higher temperatures than the sensors located at the center of the battery surface.  相似文献   

3.
Analysis of twenty-one thermal springs emerging along the Jordan-Dead Sea Rift Valley in Israel indicates a very good correlation between the concentration of dissolved silica and the temperature of the spring orifice. Dissolution of quartz was identified as the apparent source of the silica in the water. Application of the silica geothermometer for mixed systems suggests that the springs in the Tiberias Lake Basin are supplied with hot water from deep reservoir (or reservoirs) at a temperature of 115°C (239°F). The same temperature was postulated earlier by the application of the Na-K-Ca hydro-geothermometer to a group of thermal springs in the same basin. The temperature of the reservoir supplying hot brines to the springs emerging along the western shore of the Dead Sea is estimated at 90°C (194°F).  相似文献   

4.
This paper presents a computational modeling for the temperature distribution of a rotating thick‐walled cylindrical spacecraft subjected to solar radiation. The inner surface of the spacecraft is thermally insulated while the outer surface is subjected to concurrent events of solar incidence and radiative heat dissipation to space. The governing equation for the normalized temperature is discretized using a finite difference scheme and Successive Line Over‐Relaxation (SLOR) is used to solve the resulting system of algebraic equations. Numerical simulations of temperature distribution on the spacecraft for different spinning speeds, angular positions, and different radii are discussed and evaluated for both linearized and nonlinear boundary conditions. Comparative analysis between the computational modeling and the exact analytical solution for the linearized boundary condition is presented. The results indicate that the outer surface temperature distribution of the spacecraft is nearly independent of the angular position; at sub‐cylindrical surface, this independence is achieved at low angular velocity. Moreover, numerical simulations show that the use of the linearized boundary condition at the outer surface presents a good approximation for the case of high‐speed spinning spacecrafts, while it results in significant errors in the temperature field in the case of stationary and low‐speed spinning spacecrafts. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20368  相似文献   

5.
The subject of this investigation was the freezing of initially superheated pure water, at small Stefan numbers, contained in a horizontal cylinder. Three experiments were conducted and were compared to an analytical model based upon the heat balance integral method which considered one-dimensional (radial) conductive heat transfer with either zero or a finite amount of initial superheat contained in the water. The equations are solved numerically, employing the Runge-Kutta method for solving the first order governing differential equations. The solution yielded the radius of the phase change boundary as a function of time and the time for the liquid to reach the phase change temperature (0°C) when there is initial superheat. The analytical and experimental solidification time results obtained in this investigation compare very well. As in previous studies, the solidification time was found to be a linear function of Stefan number for zero initial superheat. The analytical results obtained for no initial superheat, though, differ somewhat from the results of some other investigations. Free convection affects appeared to be negligible.  相似文献   

6.
This paper presents the thermodynamic and hydrodynamic feasibility of the application of the ammonia–water absorption system for heat or cold transportation over long distance. A model of a long‐distance heat energy transportation system is built and analyzed, and it shows satisfactory and attractive results. When a steam heat source at the temperature of 120°C is available, the user site can get hot water output at about 55°C with the thermal COP of about 0.6 and the electric COP of about 100 in winter, and cold water output at about 8°C with the thermal COP of about 0.5 and the electric COP of 50 in summer. A small‐size prototype is built to verify the performance analysis. Basically the experimental data show good accordance with the analysis results. The ammonia–water absorption system is a potential prospective solution for the heat or cold transportation over long distance. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper a brief review is given of the dependence of the oxygen isotopic fractionation of the sulfate ions-water system on temperature and the pH. From the available experimental data some relationships have been elaborated, which show that the isotopic exchange time is strongly temperature and pH dependent. The times for 97 per cent of isotopic exchange (near equilibrium conditions) at pH 7.0 are about 9 years at 200°C and 0.6 years at 330°C, while at pH 3.8 and at the same temperatures the times of exchange are 1.5 years and 0.08 years respectively. Thus, at the temperatures and pH of geothermal reservoirs the sulfate could be in isotopic equilibrium with environmental water, and the oxygen isotopic fractionation factors of sulfate-water geothermal pairs, being temperature dependent, can be used as geothermometers.Also reported here are some results on the O18 content of sulfate-water pairs from some wells on the edge of and outside the Larderello geothermal basin. The estimated isotopic temperatures are not very significant for the deep reservoir temperatures due to the geological features of the Larderello area which show important outcropping and deep anhydrite layers. Furthermore, as regards the wells outside the Larderello basin (Travale wells) some mixing of the geothermal water with colder underground water has been proved. However, the isotopic temperatures are generally higher than those measured at the well-head, and the highest ones are close to those estimated for the geothermal reservoir.In other geothermal areas more convenient from a geological point of view, the O18 content of the sulfate-water pair can be a useful and accurate thermometer.The O18/O16 ratios of several other sulfates (surface and deep anhydrite samples, sulfate ions in thermal springs) from the same area were also determined and differ substantially from borehole sulfate values.  相似文献   

8.
The thermal entry region heat transfer due to turbulent forced convection, subjected to a sinusoidally varying inlet temperature is solved by employing a hybrid numerical-analytical solution technique under linear variation of wall temperature and constant wall temperature as boundary condition and is verified with the experimental results. The analytical solution of the problem is obtained through extending the generalized integral transform technique. An experimental set-up was built and used in order to validate the employed mathematical modeling. Analytical solutions are compared with the experimental findings. Satisfactory agreement is obtained between theoretically and experimentally determined heat transfer characteristics for different axial positions along the channel. Heat transfer characteristics of flow have been determined for linear wall temperature and constant wall temperature boundary conditions. Results obtained from the analytical-numerical solution technique and experimental studies have been presented in graphical and tabular forms.  相似文献   

9.
This article presents a combined experimental and modelling study for determining the thermal parameters of spherical produces in immersing cooling. In experiments, large spherically shaped water melons were selected as test samples, and cooled in water at surrounding temperatures of 0·5°C, 1·0°C, and 1·5°C. Inside temperatures of the produces were recorded at these water temperatures. In the analytical part, the models were introduced to determine the thermal parameters involved in the process, such as cooling coefficients, lag factors, heat transfer coefficients, thermal conductivities, thermal diffusivities, Biot numbers as well as the cooling times in terms of half cooling and seven-eighths cooling times. The results indicate that the cooling coefficient, the heat transfer coefficient, the Biot number, and the thermal diffusivity of the produce decreased by 3·2%, 0·42%, 0·42%, and 3%, respectively, with increasing cooling medium temperature. The lag factor increased by 9·3%. The half cooling time and the seven-eights cooling time indicating the cooling rates of the produce increased by respectively 15·01% and 7·56%. One can conclude that the present technique is a useful, simple and effective tool for determining thermal parameters for produces cooled in a fluid medium.  相似文献   

10.
In high concentrating photovoltaic systems, thermal regulation is of great importance to the conversion efficiency and the safety of solar cells. Direct‐contact liquid film cooling technique is an effective way of thermal regulation with low initial investment. Tilt of solar cells is common in concentrating solar systems. An evaluation of direct‐contact liquid film cooling technique behind tilted high concentration photovoltaics was performed using both experimental and computational approaches. In the experiment, deionized water was used as the coolant at the back of simulated solar cells. Solar cell inclination of 0° to 75° with inlet water flow rate of 100–300 L/hour and inlet temperature of 30°C to 75°C were experimentally investigated. A two‐dimensional model was developed using computational fluid dynamics technique and validated by experimental results. The effects of inclination on average temperature, temperature uniformity, and heat transfer coefficient were discovered in this paper. The results indicated that 20° is the optimum angle for liquid film cooling. In addition, optimum inlet width, temperature, and velocity for inclination over 30° are 0.75 mm, 75°C, and 0.855 m/s, respectively.  相似文献   

11.
Heat transfer to constant-property, fully developed, laminar flows in circular-segment ducts with uniform wall temperature (T) has been analyzed. Besides representing a compact surface, the segment duct geometry models the flow cross section of a circular tube with a straight-tape insert. Two variations in the T thermal boundary condition are considered: constant axial and circumferential wall temperature, and constant temperature on the curved surface but an adiabatic flat wall. These two conditions model the extremes of the fin effects of a straight-tape insert, i.e., 100% and zero fin efficiencies, respectively. Numerical solutions, obtained by using finite difference techniques, are presented for both the velocity and temperature fields. The isothermal friction factors are in excellent agreement with analytical solutions reported in the literature. The Nusselt number results for the two thermal boundary conditions are presented for different segment shapes, 0° ≤, 6 ≤, 90°, and they represent the lower limits of the heat transfer enhancement due to twisted-tape inserts.  相似文献   

12.
In the present paper, an exergetic analysis of a double stage thermal compressor using the lithium bromide–water solution is performed. The double stage system considered allows obtaining evaporation temperatures equal to 5 °C using solar heat coming from flat plate collectors and other low grade thermal sources. In this study, ambient air and water are alternatively used as cooling fluids without crystallization problems up to condensation–absorption temperatures equal to 50 °C. The results obtained give the entropy generated, the exergy destroyed and the exergetic efficiency of the double stage thermal compressor as a function of the absorption temperature. The conclusions obtained show that the irreversibilities generated by the double stage thermal compressor will tend to increase with the absorption temperature up to 45 °C. The maximum value corresponds to 1.35 kJ kg−1 K−1. The entropy generated and the exergy destroyed by the air cooled system are higher than those by the water cooled one. The difference between the values increases when the absorption temperature increases. For an absorption temperature equal to 50 °C, the air cooled mode generates 14% more entropy and destroys 14% more exergy than the water cooled one. Also, the results are compared with those of previous studies for single and double effect air cooled and water cooled thermal compressors. The conclusions show that the double stage system has about 22% less exergetic efficiency than the single effect one and 32% less exergetic efficiency than the double effect one.  相似文献   

13.
This work summarises the results obtained from a failure analysis of a pipe crack in a BWR water clean-up system. The cracking occurred in an AISI 304 steel pipe section area where mixing of the water streams at two different temperatures (280° and 130°C) took place. The temperature difference and turbulence induced a cyclic thermal loading which, together with the environment, caused cracking. Cracking propagated as transgranular brittle cleavage-like fracture, probably on a stress level below yield stress. Cracking was still observed in areas where the cyclic temperature differences caused by turbulence were markedly lower. The AISI 304 steel was in fully solution annealed as-receiv?d condition.  相似文献   

14.
This paper reports the test results of the first industrial-scale absorption heat transformer (AHT) equipment in China, to recover the waste heat released from mixture of steam and organic vapor at 98 °C in coacervation section, synthetic rubber plant of Yanshan Petrochemical Corporation, Beijing, China. The recovered heat is used to heat hot water from 95 to 110 °C, feeding back to the coagulator as the supplementary heating source. The AHT system is operating with H2O/LiBr solution with heat flow of 5000 kW. The coefficient of performance (COP), the thermal efficiency and the temperature lift of the AHT system are presented. The heat transfer characteristics of the AHT components, i.e. absorber, generator, evaporator, condenser and the liquid–liquid solution heat exchanger, are also illustrated by comparison of experimental data and the model calculated results. The results show that the mean COP is 0.47, the gross temperature lift of 25 °C can be realized and the payback period is ≈2 years.  相似文献   

15.
In this study, an experimental prototype was built to examine the use of an underground water tank as a heat exchange medium with the soil to reduce photovoltaic (PV) panel operation temperatures and simultaneously improve PV efficiency. Three PV systems were evaluated: a benchmark PV panel without cooling (panel A); a PV panel with water spray cooling (panel B); and a PV panel with evaporative cooling (panel C). The cooling techniques in modules (B) and (C) were used to investigate the effects of underground water on the performance of PV panels in arid conditions. Four cases were devised as follows: spray panel back cooling (I), spray front and back cooling (II), spray front and back cooling using an Arduino controller (III), and repeating case III with different water flow rates (IV). Readings were taken from 9:00 am to 4:00 pm  from May to August. The experimental results showed that the use of underground water spray cooling led to reductions in the temperature of PV panel B, 14°C, 17.6°C, 18.8°C, and 22.7°C for cases I, II, III, and IV, respectively, when compared with the uncooled panel, and efficiency improved by 3.5%, 4.8%, 18%, and 23.1%, respectively.  相似文献   

16.
Ocean water covers a vast portion of the Earth's surface and is also the world's largest solar energy collector. It plays an important role in maintaining the global energy balance as well as in preventing the Earth's surface from continually heating up because of solar radiation. The ocean also plays an important role in driving the atmospheric processes. The heat exchange processes across the ocean surface are represented in an ocean thermal energy budget, which is important because the ocean stores and releases thermal energy. The solar energy absorbed by the ocean heats up the surface water, despite the loss of heat energy from the surface due to back‐radiation, evaporation, conduction, and convection, and the seasonal change in the surface water temperature is less in the tropics. The cold water from the higher latitudes is carried by ocean currents along the ocean bottom from the poles towards the equator, displacing the lower‐density water above and creating a thermal structure with a large reservoir of warm water at the ocean surface and a large reservoir of cold water at the bottom, with a temperature difference of 22°C to 25°C between them. The available thermal energy, which is the almost constant temperature water at the beginning and end of the thermocline, in some areas of the oceans, is suitable to drive ocean thermal energy conversion (OTEC) plants. These plants are basically heat engines that use the temperature difference between the surface and deep ocean water to drive turbines to generate electricity. A detailed heat energy budget of the ocean is presented in the paper taking into consideration all the major heat inputs and outputs. The basic OTEC systems are also presented and analyzed in this paper. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
This paper focuses on the novelty pumpless organic Rankine cycle (ORC) and its choice of working fluids. Based on the selection criteria, the refrigerant of R1233zd(E) is firstly chosen and investigated in the pumpless ORC system. In the system, the feed pump is removed, and the refrigerant flows back and forth between two heat exchangers, which act as the evaporator or condenser, respectively. The impacts of the heating water temperature and loads on the system performance are studied to find out the best operating conditions. The low‐grade heat source is simulated by an electric boiler. The temperature of the heat resource ranges from 80°C to 100°C with the interval of 5°C. The temperature of the cooling water inlet is 10°C and is kept constant. The largest average power output is 127 W under the condition of 100°C heating water with nine loads. Because the cycle efficiency with heating steam temperature of 100°C cannot be determined, the highest energy and exergy efficiencies are 3.5% and 17.1%, respectively, for heating water of 95°C with seven loads. The experimental results show that the energy and exergy efficiencies increase with the increase of the heating temperature. The power and current outputs increase when the loads increase under the condition of the constant heating water temperature, whereas the voltage output decreases meanwhile. The generating time increases when the loads increase. This phenomenon is mainly caused by the increasing evaporating pressure and decreasing condensing pressure when the loads increases.  相似文献   

18.
Recently, researchers are focussing on using ground coupled heat pump systems as a heat source or sink rather than air source heat pumps for HVAC needs due to the stable temperature and the high thermal inertia of the soil. The investment cost of these systems is too expensive therefore the precise thermal analysis, design and parameter optimization are essential. For an accurate design, the maximum of physical phenomena such as: axial effects, seasonal effects, underground water flow and BHE dynamic behaviour must be accounted for in order to reflect exactly the real physical situation. In the present paper thermal interferences are investigated under seasonal effects and a dynamic heat flux for a vertical coaxial borehole heat exchangers field. This enables to avoid thermal interferences by predicting efficient period of operation corresponding to the beginning of the studied phenomena (interferences) for a given separation distance between two boreholes. To reach this purpose, as a first step, a transient 2D Finite volume method (FVM) for a single borehole heat exchanger was built using MATLAB, which accounts for accurate axial and seasonal effects and a dynamic heat flux that is function of depth and time. This model has been validated against the Finite Line Source (FLS) analytical solution and good agreement between analytical and numerical methods has been obtained. Then the model has been extended to a quasi-3D model in order to investigate thermal interferences between two neighbouring boreholes. After 500 h and at the mid-point of the separating distance (1.5 m) where interferences are the strongest, the temperature is 50% (6.64 °C) lower than the case where there are no interferences.  相似文献   

19.
The main goal of the present study was to prepare and also to investigate the effects of both temperature and weight concentration on the thermo-physical properties of γ-Fe2O3/water nanofluids. The γ-Fe2O3 nanoparticles were synthesized by laser pyrolysis technique and characterized using TEM, XRD, and EDX techniques. Thermal conductivity, viscosity and surface tension of γ-Fe2O3/water nanofluids were investigated within the range of the temperature of 20°C to 70°C for various weight concentrations of nanoparticles (0.5, 1.0, 2.0, and 4.0 wt%). The experimental results show that the thermal conductivity ratio is much higher than of thermal conductivity of base fluid. Thus, the relative thermal conductivity was 59% for a concentration of 4.0 wt% and a temperature of 50°C. Also, it has been observed that the influence of weight concentration of nanoparticles on viscosity was lower at temperatures over 55°C. At standard temperature of 25°C and 2.0 wt.% concentration of nanoparticles, the relative dynamic viscosity was 5.61%. Experimental results show that the surface tension increases with increase of weight concentrations and decreases with increase of temperatures. For a temperature of 70°C and 2.0 wt.% concentration of nanoparticles, the relative surface tension was 46%. The experimental results were compared with data available in literature.  相似文献   

20.
This paper has made an active attempt on recovering water from flue gas using membranes. The properties of SPEEK/PES, a hydrophilic composite hollow fiber membrane, are studied in the present paper using experimental analyses of thermal gravimetric, differential scanning calorimetry and scanning electron micrograph. Experimental results show that SPEEK/PES composite hollow fiber membranes have excellent thermal stability and mechanical properties in flue gas. An experiment with using simulated flue gas (N2/water vapor mixed) is carried out to study the impact of sweep gas flow rate and feed gas temperature on the membrane module properties. The results indicate that the water recovery rate increases with the temperature increasing from 40 °C to 70 °C. The application of capturing the water in flue gas is very attractive, and it will provide a new way of saving energy and alleviating the haze.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号