首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Electrohydrodynamic enhanced heat transfer of the natural convection inside an enclosure with a vertical fin array is numerically investigated via a computational fluid dynamics technique. The parameters considered in a numerical modeling are supplied voltage, Rayleigh number, inclined angle, number of electrodes, electrode arrangement, number of fins, and fin length. The results reveal that the flow and heat transfer enhancements are significantly dependent on the number and position of electrodes around the fins. Moreover, the heat transfer coefficient is substantially improved by the electric field especially at the large number of fins and the long fin length.  相似文献   

2.
Electrohydrodynamic heat transfer enhancement of natural convection inside the finned vertical channels is investigated via a computational fluid dynamics technique. The interactions between electric field, flow field, and temperature field are numerically determined. Flow and heat transfer enhancements are significantly influenced at low Rayleigh number. The effect of electrode arrangement and number of electrodes to the average velocity and Nusselt number are expressed. An optimum inclined angle of the channel is recommended. Relation between the number of fins and fin length to the augmented flow and heat transfer is also analyzed.  相似文献   

3.
In this study, fully developed laminar flow and convective heat transfer in an internally finned tube heat exchanger are investigated numerically. The flow is assumed to be both hydrodynamically and thermally developed with uniform outside wall temperature. Parameters of the thickness, length, and number of fins and thermal conductivity ratio between fin and working fluid are varied to obtain the friction factor as well as Nusselt number. The results show that the heat transfer improves significantly if more fins are used; however, the pressure drop turns out to be large in this heat exchanger. In addition, it is found that the emergence of closed-loop isotherms between the areas of two neighboring fins leads to heat transfer enhancement in the internally finned tube. When the fin number is smaller than 14, there appears a maximum Nusselt number at about 0.8 of the dimensionless fin length. Finally, an experiment is conducted to verify the numerical results.  相似文献   

4.
Experimental studies of air-side heat transfer and pressure drop characteristics of offset strip fins and flat tube heat exchangers were performed. A series of tests were conducted for 9 heat exchangers with different fin space, fin height, fin strip length and flow length, at a constant tube-side water flow rate of 2.5 m3/h. The characteristics of the heat transfer and pressure drop of different fin space, fin height and fin length were analyzed and compared. The curves of the heat transfer coefficients vs. the pumping power per unit frontal area were then plotted. Moreover, the enhanced heat transfer mechanism of offset strip fins was analyzed using field synergy theory. The results showed that fin length and flow length have more obviously effect on the thermal hydraulic characteristics of offset strip fins. __________ Translated from Journal of Shanghai Jiaotong University, 2007, 41(3): 366–369, 375 [译自: 上海交通大学学报]  相似文献   

5.
Numerical study of laminar free convection about a single pin fin attached to a horizontal base plate has been reported in this article. Fluid at the far field moves horizontally towards the fin and then rises almost vertically along the fin and finally leaves through the top. With the increase in fin diameter heat transfer increases while the heat flux at fin base decreases establishing the advantage of large number of small diameter fins over fewer fins of bigger diameter. Correlation has been developed to predict the base heat flux for a given fin diameter to length ratio and Grashof number. This may be used to estimate the upper limit of free convection heat transfer from any horizontal heat sink with an array of circular pin elements.  相似文献   

6.
The hydraulic and thermal performance of a plate-fin heat sink undergoing cross flow forced convection with the introduction of a shield was investigated. With a CFD numerical method, the influence of fin width, fin height, number of fins and Reynolds number were assessed without and with a shield. A shield that tends to decrease the bypass flow effect has a great influence on the variation of the thermal fluid field and the performance of the heat sink. The results of attaching a shield show that more coolant fluid is forced to flow into the fin-to-fin channel to enhance the heat transfer, increasing the pressure drop; this trend is significant at low Reynolds numbers. The decrease of thermal resistance due to the shield diminishes with increasing fin height, but increasing the width of the fins has a more radical effect. For a shield at a particular Reynolds number, the fin geometry should be selected carefully to fit the demands of enhanced effectiveness of heat transfer and decreased power consumption.  相似文献   

7.
Heat transfer behavior with both the conductive and nonconductive fins have been analyzed by examining variations of the local and average Nusselt numbers in two‐dimensional flow. The main objective of this study is to quantify and compare the natural convection heat transfer enhancement of fin array with different fin aspect ratio and at different angles of inclination. It is found that significant heat transfer augmentation is obtained for both conductive and nonconductive fins. For conductive fins 20% higher augmentation factor is obtained when the fin aspect ratio is 6, angle of inclination is 60° and the pitch‐to‐length ratio is 0.2. For nonconductive fins, 10% higher augmentation factor is obtained when fin aspect ratio is 8, angle of inclination is 45° and pitch‐to‐length ratio at 0.5. A general correlation has been developed to predict the average Nusselt number and heat transfer augmentation factor for conductive and nonconductive fin arrays as a function of different fin configurations.  相似文献   

8.
董军启  陈江平  袁庆丰  陈芝久 《动力工程》2006,26(6):871-874,903
风洞试验台上对8种不同结构参数的百叶窗翅片进行传热和流动阻力的性能试验。分析比较了翅片长度、翅片间距、翅片高度对其传热和阻力性能的影响,其中翅片长度和翅片间距对无量纲传热j因子和摩擦阻力f因子影响较大,翅片高度影响较小。同时采用3√j/f因子综合评价了8种翅片的强化传热效果。结果表明,翅片长度对强化传热影响最为显著。  相似文献   

9.
Battery, as the main energy storage element, directly affects the performance of electric vehicle. Battery thermal management research is required as the battery performance influenced by temperature obviously. This article selects liquid cold plate with different heat transfer enhanced fins as the research object. The angle and length of fins are chosen as the variables. Computational fluid dynamics (CFD) methods and experiments are used in this research. The fin angle of 15°, 30°, and 45° and fin length of 8, 10, 12 mm are selected to compose enhanced fins. The results indicate that heat transfer fins inside liquid cold plate can significantly decrease the highest temperature of battery module and temperature difference among cells. Otherwise, different fin angle and fin length can achieve different heat dissipation performance, which is not positive correlation. Then the design reference of heat transfer enhanced fin in liquid cold plate is offered.  相似文献   

10.
Experimental studies were conducted to investigate the air-side heat transfer and pressure drop characteristics of a novel louvered fins and flat tube heat exchangers. A series of tests were conducted for 9 heat exchangers with different fin space and fin length, at a constant tube-side water flow rate of 2.8 m3/h. The air side thermal performance data were analyzed using the effectiveness-NTU method. Results were presented as plot of Colburn j factor and friction factor f against the Reynolds number in the range of 500–6500. The characteristics of the heat transfer and pressure drop of different fin space and fin length were analyzed and compared. In addition, the curves of the heat transfer coefficients vs. pumping power per unit heat transfer area were plotted. Finally, the area optimization factor was used to evaluate the thermal hydraulic performance of the louvered fins with differential geometries. The results showed that the j and f factors increase with the decrease of the fin space and fin length, and the fin space has more obvious effect on the thermal hydraulic characteristics of the novel louvered fins.  相似文献   

11.
A numerical simulation is performed to investigate the characteristics of flow and heat transfer in microchannels with cavities and fins. Nine microchannels with various shaped cavities and fins are presented and compared to the smooth microchannel. The effect of cavity and fin shapes on the flow field and temperature field is analyzed. Results show that the presence of cavity and fin can increase the heat transfer area, intensify mainstream disturbance, and induce chaotic advection, which result in obvious heat transfer enhancement. The shape of cavity or fin has a great influence on the hydrodynamic and thermal performance for such micro heat sinks. Based on the performance evaluation criterion (PEC), the overall performance of the microchannel is evaluated. The combination of cavities and fins leads to lower bottom temperature, lower net temperature gradient of fluid, and better heat transfer performance, which has the potential to meet the increased heat removal requirement.  相似文献   

12.
Conjugate numerical solution of laminar free convection about a horizontal cylinder with external longitudinal fins of finite thickness has been carried out. Fins alone contribute very small to the total heat transfer but they greatly influence the heat transfer from the uncovered area of the cylinder. Among the various fin parameters, thickness has the greatest influence on heat transfer. The rate of heat transfer is above that for the free cylinder only when the attached fins are very thin. For thin fins, there exist a fin length, which maximizes the rate of heat transfer. The optimum number and dimensionless length of the fins were obtained as 6 and 0.2 respectively when fin thickness is 0.01, the thinnest among those investigated in this study.  相似文献   

13.
Extended surfaces mostly aim to improve the heat transfer upon increasing the area of heat transfer. In this paper, the influence of using fins on flow behaviors and the heat transfer of the shell and tube heat exchanger has been investigated. In this regard, the present results are verified with available experimental data in the literature for a helical tube without fins. The effects of fin density (fin per inch), its height, and material have been studied on the heat transfer rate. In addition, the effects of radial pitch and the number of coil loops are studied. The results indicate that implementing extended surfaces significantly increases the heat transfer rate. The increase of fin density from 8 to 12 and the height from 11.5 to 13.5 mm enhances heat transfer up to 48% and 43% depending on Dean number, respectively. The rise of coil pitch augments the overall heat transfer, and it is more efficient at lower Dean numbers. The predicted results also show that the fin material does not have any significant effect on heat transfer.  相似文献   

14.
Optimized electrode arrangement in solar air heater   总被引:1,自引:0,他引:1  
Laminar forced convection inside the solar air heater with various wire electrode arrangements are numerically examined for heat transfer enhancement using electrohydrodynamic technique. The electric field is generated by the wire electrodes charged with DC high voltage ranging from 7.5 to 17.5 kV. Reynolds number corresponding to the flow considered is between 100 and 2000. The numerical modeling of computational fluid dynamics includes the interactions among electric field, flow field, and temperature field. It is found that the enhancement of heat transfer coefficient with the presence of electric field increases in relation with the supplied voltage but decreases when the Reynolds number and the distance between electrode and channel surface are augmented. The optimized electrode arrangement, which obtains the best heat transfer enhancement is investigated incorporating with the pressure drop consideration. The heat transfer enhancement is also depended on the number of electrodes per length and the channel dimension.  相似文献   

15.
This work assesses the performance of plate-fin heat sinks in a cross flow. The effects of the Reynolds number of the cooling air, the fin height and the fin width on the thermal resistance and the pressure drop of heat sinks are considered. Experimental results indicate that increasing the Reynolds number can reduce the thermal resistance of the heat sink. However, the reduction of the thermal resistance tends to become smaller as the Reynolds number increases. Additionally, enhancement of heat transfer by the heat sink is limited when the Reynolds number reaches a particular value. Therefore, a preferred Reynolds number can be chosen to reduce the pumping power. For a given fin width, the thermal performance of the heat sink with the highest fins exceeds that of the others, because the former has the largest heat transfer area. For a given fin height, the optimal fin width in terms of thermal performance increases with Reynolds number. As the fins become wider, the flow passages in the heat sink become constricted. As the fins become narrower, the heat transfer area of the heat sink declines. Both conditions reduce the heat transfer of the heat sink. Furthermore, different fin widths are required at different Reynolds numbers to minimize the thermal resistance.  相似文献   

16.
In the present work, the optimization of a longitudinal fin array is investigated. Heat is transferred by conduction along the fins and dissipated from the fin surface via natural convection to the ambient and radiation to other fin surfaces and surrounding. The aim of the optimization is to find the optimum geometry and the number of fins in such a way that the rate of heat transfer from the array is maximized. A modified genetic algorithm is used to maximize the objective function which is defined as the net heat rate from the fin surface for a given length. The fin profile is represented by B-spline curves, where the shape of fin is determined by the positions of a set of control points. The effects of the base temperature, the fin length and the height of array on the optimum geometry and on the number of fins are investigated by comparing the results obtained for several test cases. In addition, the contributions of convective heat transfer and radiative heat transfer in net heat transfer are studied for these cases. The enhancement of heat transfer due to the optimum fin geometry is examined by comparing the results obtained for the optimum fin profile with those with conventional profiles.  相似文献   

17.
Erfan Rasouli 《传热工程》2016,37(11):994-1011
Single-phase heat transfer and pressure drop of liquid nitrogen in microscale heat sinks are studied experimentally in this paper. Effects of geometrical variations are characterized on the thermofluidic performance of staggered microscale pin fin heat sinks. Pitch-to-diameter ratio and aspect ratio of the micro pin fins are varied. The pin fins have square shape with 200 or 400 μm width and are oriented at 45 degrees to the flow direction. Thermal performance of the heat sinks is evaluated for Reynolds numbers (based on pin fin hydraulic diameter) from 108 to 570. Results are presented in a nondimensional form in terms of friction factor, Nusselt number, and Reynolds number and are compared with the predictions of existing correlations in the literature for micro pin fin heat sinks. Comparison of flow and heat transfer performance of the micro pin fin heat sinks reveals that at a particular critical Reynolds number of ~250, pin fin heat sinks with the same aspect ratio but larger pitch ratio show a transition in both friction factor and Nusselt number. In order to better characterize this transition, visualization experiments were performed with the Fluorinert PF5060 using an infrared camera. At the critical Reynolds number, for the larger pitch ratio pin fin heat sink, surface thermal intensity profiles suggest periodic flapping of the flow behind the pin fins at a Strouhal number of 0.227.  相似文献   

18.
The problem of natural convection heat transfer from a horizontal fin array is theoretically formulated by treating the adjacent internal fins as two-fin enclosures. A conjugate analysis is carried out in which the mass, momentum and energy balance equations for the fluid in the two-fin enclosure are solved together with the heat conduction equations in both the fins. The numerical solutions by using alternating direction implicit (ADI) method yield steady state temperature and velocity fields in the fluid, and temperatures along the fins. Each end fin of the array is exposed to limited enclosure on one side and to infinite fluid medium on the other side. Hence a separate analysis is carried out for the problem of end fin exposed to infinite fluid medium with appropriate boundary conditions. From the numerical results, the heat fluxes from the fins and the base of the two-fin enclosure, and the heat flux from the end fin are calculated. Making use of the heat fluxes the total heat transfer rate and average heat transfer coefficient for a fin array are estimated. Heat transfer by radiation is also considered in the analysis. The results obtained for a four-fin array are compared with the experimental data available in literature, which show good agreement. Numerical results are obtained to study the effectiveness for different values of fin heights, emissivities, number of fins in a fixed base, fin base temperature and fin spacing. The numerical results are subjected to non-linear regression and equations are obtained for heat fluxes from the two-fin enclosure and single fin as functions of Rayleigh number, aspect ratio and fin emissivity. Also regression equations are obtained to readily calculate the average Nusselt number, heat transfer rate and effectiveness for a fin array.  相似文献   

19.
《Applied Thermal Engineering》2007,27(2-3):539-544
The Taguchi method is a well-known parametric study tool in engineering quality and experimental design. This study analyzes five experimental factors (flow depth, ratio of fin pitch and fin thickness, tube pitch, number of louvers and angle of louver) affecting the heat transfer and pressure drop of a heat exchanger with corrugated louvered fins using the Taguchi method. Fifteen samples are selected from experimental database and the heat transfer and flow friction characteristics are analyzed. The results show that flow depth, ratio of fin pitch and fin thickness and the number of the louvers are the main factors that influence significantly the thermal hydraulic performance of the heat exchanger with corrugated louvered fins. Therefore, these three factors are considered as the main factors for an optimum design of a heat exchanger.  相似文献   

20.
Numerical investigation of fluid flow and heat transfer characteristics over louvered fins and flat tube in compact heat exchangers is presented in this study. Three-dimensional simulations of single and double row tubes with louvered fins have been conducted. Simulations are performed for different geometries with varying louver pitch, louver angle, fin pitch and tube pitch and for different Reynolds number. Conjugate heat transfer and conduction through the fins are considered. The air-side performance of heat exchanger is evaluated by calculating Stanton number and friction factor. The results are compared with experiment and a good agreement is observed. The local Nusselt number variation along the top surface of the louver is calculated and effects of geometrical parameters on the average heat transfer coefficient is computed. Design curves are obtained which can used to predict the heat transfer and the pressure drop for a given louver geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号