首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Acta Materialia》2001,49(13):2463-2470
The mechanical behaviour of commercially available ALPORAS aluminium foam with two different densities was studied under tension loading. In addition to the common stress–strain measurements, local deformation, notch-opening displacement and damage evolution were determined. The deformation characteristics deviated from those observed in aluminium foams under compression. No deformation bands or plastic instabilities could be observed in tension, which are very frequent in compression of metallic foams. Four regimes were evident in the stress–strain curves and deformation maps: the linear elastic regime, the plastic regime with no significant crack initiation and propagation, the regime of formation of a fracture process zone and, finally, the regime of fracture, where a main crack propagates through the specimen and leads to failure. The fracture strain was only a few per cent, with the higher-density foam showing a larger fracture strain, and the plastic Poisson's ratio was about 0.35. The notched specimens showed increasing fracture strengths in terms of the net section stress with increasing notch depth. It is suggested that a change in stress state, caused by a non-vanishing Poisson's ratio, in front of the notch tip creates an increase of the fracture strength similar to the behaviour in ductile bulk metals.  相似文献   

2.
采用等温热压缩实验研究不同变形条件下(变形温度300~450℃、应变速率0.001~1 s?1)原位TiB2颗粒增强7075铝基复合材料的热成形行为、损伤机制和显微组织演变.结果表明,复合材料在低温和高应变速率下的主要损伤机制是颗粒断裂和界面脱粘,而在高温和低应变速率下主要是基体的韧窝断裂.此外,复合材料在高温、低应变...  相似文献   

3.
Molecular dynamics simulations of notched NiAl nanofilms tension are carried out. The stress–strain curves are calculated for a dislocation-free nanofilm and for nanofilms with periodic arrays of prismatic dislocations introduced in order to create tensile internal stress in the inner part of the nanofilms and compressive stress near their surfaces. It is demonstrated that under uniaxial tensile load the nanofilms with the dislocation loops can show higher strength, strain to failure, and energy to failure compared to the dislocation-free nanofilm. Larger strength of the nanofilms with dislocations is naturally explained by the compressive internal stress at the surfaces which detains crack initiation at the notch under tensile loading. Increase in the strain and energy to failure is due to the particular mechanism of elastic strain observed for the nanofilm. There exists a domain of strain where homogeneous deformation of the nanofilm is thermodynamically unstable. As a result, domains with larger elastic strain appear and elastic deformation of the nanofilm occurs at practically constant stress by growth of the domains with larger elastic strain in expense of the domains with smaller elastic strain. We believe that this mechanism of non-homogeneous elastic deformation is due to competing interaction of atoms of different sorts and thus, it cannot be realized in pure metals but can happen in ordered alloys and intermetallic compounds. Our results demonstrate that strengthening by introducing internal stresses, widely used for macroscopic structures, can also be applied for nanomaterials such as nanofilms and nanowires.  相似文献   

4.
《Acta Materialia》2001,49(16):3219-3229
The correlation between tensile and indentation behavior in particle-reinforced metal matrix composites (MMCs) was examined. The model composite system consists of a Al–Cu–Mg alloy matrix reinforced with SiC particles. The effects of particle size, particle volume fraction, and matrix aging characteristics on the interrelationship between tensile strength and macro-hardness were investigated. Experimental data indicated that, contrary to what has been documented for a variety of monolithic metals and alloys, a simple relationship between hardness and tensile strength does not exist for MMCs. While processing-induced particle fracture greatly reduces the tensile strength, it does not significantly affect the deformation under indentation loading. Even in composites where processing-induced fracture was nonexistent (due to relatively small particle size), no unique correspondence between tensile strength and hardness was observed. At very low matrix strengths, the composites exhibited similar tensile strengths but the hardness increased with increasing particle concentration. Fractographic analyses showed that particle fracture caused by tensile testing is independent of matrix strength. The lack of unique strength–hardness correlation is not due to the particle fracture-induced weakening during the tensile test. It is proposed that, under indentation loading, enhanced matrix flow that contributes to a localized increase in particle concentration directly below the indenter results in a significant overestimation of the overall composite strength by the hardness test. Micromechanical modeling using the finite element method was used to illustrate the proposed mechanisms under indentation loading and to justify the experimental findings.  相似文献   

5.
针对真空压力浸渗制备的单向碳纤维增强铝基复合材料(CF/Al复合材料),采用细观力学数值模拟和实验相结合的手段研究了其在横向压缩载荷下的损伤演化与断裂力学行为,并分析了界面结合性能和纤维体积分数对复合材料横向压缩力学性能的影响。结果表明:基于纤维对角正方形分布RVE建立的细观力学有限元模型,可以较好地计算预测复合材料横向压缩变形力学行为。压缩变形初期界面首先发生损伤和失效现象,进而诱发界面附近基体合金的局部损伤;随压缩应变增加,界面和基体损伤逐渐发展并导致纤维的失效,复合材料横向压缩断口呈现出界面脱粘和纤维断裂共存的微观形貌。复合材料横向压缩弹性模量和极限强度随着界面强度增大而增大,而受界面刚度的影响较小;在相同界面性能条件下,复合材料横向压缩极限强度和弹性模量均随纤维体积分数的增大而减小。  相似文献   

6.
The influence of the shape and spatial distribution of reinforced particles on strength and damage of metal matrix composite (MMC) is investigated through finite element method under uniaxial tensile, simple shear, biaxial tensile, as well as combined tensile/shear loadings. The particle shapes change randomly from circular to regular n-sided polygon (3 ≤ n ≤ 10); the particle alignments are determined through a sequentially random number stream and the particle locations are defined through the random sequential adsorption algorithm. The ductile failure in metal matrix and brittle failure in particles are described through damage models based on the stress triaxial indicator and maximum principal stress criterion, respectively, while the debonding behavior of interface between particles and matrix is simulated through cohesive elements. The simulation results show that, under different loadings, interface debonding is the dominated failure mechanism in MMCs and plastic deformation and ductile failure of matrix also play very important roles on the failure of MMCs.  相似文献   

7.
To clarify the difference in the plasticity of metallic glasses observed experimentally under tension and compression, the changes in the structural state induced during the deformation of Cu65Zr35 glassy alloy were analyzed by means of molecular dynamics (MD) simulation. Although mechanical responses were distinct, no clear difference was detected in the change in the short-range order of the deformed structures, except for the intensive collapse of the (0,3,6,4) bonding in the elastic regime seen in the extended sample. To explain the difference in the plasticity and particularly the brittleness of bulk metallic glass (BMG) in the tensile mode, we examine the degree of strain localization and discuss the role of normal stress on the activation of shear transformation zones (STZs) during tension and compression in the elastic regime.  相似文献   

8.
Uniaxial tension tests are carried out for the Mo–10 wt.% Cu (Mo–10Cu) composite under a scanning electron microscope (SEM) at a temperature range from 25 °C to 725 °C. The stress–strain curves are obtained with both the tensile strength and the fracture strain peaked at 500 °C. Further raise of temperature would reduce the tensile strength and the fracture strain. In-situ SEM observations reveal the microstructure characteristics for Mo–10Cu composite at different temperatures. The fracture is of brittle inter-granular type when uni-axially tensioned at room temperature. As the temperature increases, formation of slip bands and linkage of micro-voids via plastic shear are observed. The fracture is characterized by mixed inter-granular fracture and plastic shear. The fracture is of predominantly plastic shear when uni-axially tensioned at 500 °C. Under uniaxial tension at temperatures higher than 650 °C, Mo–10Cu composite embrittles due to the insolubility of molybdenum and copper, and the activated grain boundary diffusion of Cu. These results are of importance for the basic understanding of the microstructure–mechanical properties relationship, as well as for the evaluation of Mo–Cu composites in practical applications.  相似文献   

9.
《Acta Materialia》2008,56(16):4402-4416
A simplified model is proposed to quantify the effect of damage in the form of particle cracking on the elastic and plastic behaviour of particle-reinforced metal matrix composites under uniaxial tensile loading: cracked particles are simply replaced, in a mean-field model, with as much matrix. Pure aluminium reinforced with 44 vol.% alumina particles, tested in tension and unloaded at periodic plastic deformations, is analysed by neutron diffraction during each reloading elastic step, at 30%, 50%, 70% and 90% of the tensile flow stress. The data give the evolution of the elastic matrix strains in the composite and also measure the progress of internal damage by particle cracking. The test gives (i) the evolution of the in situ matrix flow stress, and (ii) the evolution of load partitioning during elastic deformation with increasing composite damage. Predictions of the present model compare favourably with relevant results in the literature, and with results from the present neutron diffraction experiments.  相似文献   

10.
通过拉伸和压缩试验,获得了商业纯钛在不同温度和不同应变速率下的拉伸和压缩应力-应变关系,对比分析了拉压变形路径、变形温度和应变速率对商业纯钛塑性变形行为的影响;建立了Zener-Hollomon模型,获得了变形温度和应变速率对商业纯钛压缩变形加工硬化的作用规律及商业纯钛压缩变形加工图;基于电子背散射衍射技术,获得了商业纯钛晶粒取向分布,结合拉压变形特性阐明了商业纯钛拉伸塑性变形机理主要是滑移,压缩塑性变形机理主要分为滑移-孪生-滑移3个阶段。  相似文献   

11.
研究压头速度对Mg2Sip/AM60B复合材料显微组织和拉伸性能的影响,并与金属型铸造复合材料进行对比。结果表明,压头速度通过改变二次凝固行为和半固态变形机制对复合材料的显微组织产生明显影响,显微组织和变形机制的改变使复合材料的拉伸性能和断裂机制发生变化。当压头速度为60 mm/s时,复合材料获得最优的综合拉伸性能,抗拉强度和伸长率分别为198 MPa和10.2%。触变成形复合材料的优异性能归因于缺陷的消除和加工硬化。  相似文献   

12.
In this study, different volume fractions of B4C particles were incorporated into the aluminum alloy by a mechanical stirrer, and squeeze-cast A356 matrix composites reinforced with B4C particles were fabricated. Microstructural characterization revealed that the B4C particles were distributed among the dendrite branches, leaving the dendrite branches as particle-free regions in the material. It also showed that the grain size of aluminum composite is smaller than that of monolithic aluminum. X-ray diffraction studies also confirmed the existence of boron carbide and some other reaction products such as AlB2 and Al3BC in the composite samples. It was observed that the amount of porosity increases with increasing volume fraction of composites. The porosity level increased, since the contact surface area was increased. Tensile behavior and the hardness values of the unreinforced alloy and composites were evaluated. The strain-hardening behavior and elongation to fracture of the composite materials appeared very different from those of the unreinforced Al alloy. It was noted that the elastic constant, strain-hardening and the ultimate tensile strength (UTS) of the MMCs are higher than those of the unreinforced Al alloy and increase with increasing B4C content. The elongation to fracture of the composite materials was found very low, and no necking phenomenon was observed before fracture. The tensile fracture surface of the composite samples was indicative of particle cracking, interface debonding, and deformation constraint in the matrix and revealed the brittle mode of fracture.  相似文献   

13.
Deformation and texture evolution of AZ31 B magnesium(Mg) alloy sheet under uniaxial tension, compression, and reverse loading after different pre-strain(compression and tension) were investigated experimentally. The results indicate that the pre-compressive strain remarkably affects the reverse tensile yield stress and the width of the detwinning-dominant stage during inverse tension process. Similar to stress–strain curve of the uniaxial compression, the curve of reverse tensile yield value also has ‘S' shape, and its minimum value is only 38 MPa. The relationship between pre-compressive strain and the width of detwinning-dominant stage presents a linear growth, and the greater the precompressive strain is, the smaller the strain hardening rate of the detwinning-slip-dominant stage is. Compared with the reverse tension under pre-compression, the influence of the pre-tension deformation on the deformation mechanism of subsequent compression is relatively simple. With the increase in pre-tension strain, the yield stress of the reverse loading is rising.  相似文献   

14.
建立含孔洞的Al2Cu分子动力学模拟模型,采用嵌入原子法模拟Al2Cu模型在常温、恒定工程应变速率的拉伸环境下孔洞大小、数量及孔洞分布对Al2Cu力学性能的影响。研究结果表明:孔洞的出现使模型内部出现了自由表面并在孔洞内边缘产生了应力集中,从而大大降低材料的抗拉强度以及变形能力;孔洞增大,Al2Cu的塑性和抗拉强度均明显下降;不同孔洞数量对应的应力应变曲线在弹性变形阶段基本重合,孔洞增多,Al2Cu的塑性以及抗拉强度都有不同程度的下降;改变孔洞分布,孔洞连线方向与拉伸方向的夹角越小,Al2Cu表现出越强的塑性和抗拉强度。  相似文献   

15.
In situ electron backscattering diffraction (EBSD) investigations were conducted on polycrystalline NiTi tube specimens during tensile and compressive deformation. The long-range cooperative and catalytic martensitic transformation under tension induces the transformation to proceed in the form of helical Lüders band. Propagation of the band is closely related to the spatial distribution of the orientations of individual grains. In uniaxial compression, the larger variation in Schmid factors, and consequently the larger variation in the critical transformation stresses among grains, leads to a homogeneous martensitic transformation, and therefore the absence of the Lüders band. To interpret the observed tension–compression asymmetry, a crystallographic model of the critical transformation stress and transformation strain for polycrystalline NiTi under tension and compression is proposed. The model defines three crystallographic regions: tension-favorable, compression-favorable and neutral zones. The orientation population in which tensile strains are larger than compressive strains is much higher than that of orientations with higher compressive strains. For resolved shear stress, orientation populations favoring tension and compression do not show any great difference.  相似文献   

16.
The dynamic tensile behavior of twin-roll cast-rolled and hot-rolled AZ31B magnesium alloy was characterized over strain rates ranging from 0.001 to 375 s−1 at room temperature using an elaborate dynamic tensile testing method, and the relationship between its mechanical properties and microstructures. It is observed that the sheet has a strong initial basal fiber texture and mechanical twinning becomes prevalent to accommodate the high-rate deformation. The yield strength and ultimate tensile strength monotonically increase with increasing the strain rate, while the strain hardening exponent proportionally decreases with increasing the strain rate due to twinning-induced softening. The total elongation at fracture distinctly decreases as the strain rate increases under quasi-static tension, while the effect of strain rate on the total elongation is not distinct under dynamic tension. Fractographic analysis using a scanning electron microscope reveals that the fracture is a mixed mode of ductile and brittle fracture.  相似文献   

17.
《Acta Materialia》2001,49(19):4055-4068
The mechanical behavior of a cryomilled Al–10Ti–2Cu (wt.%) alloy has been studied by performing uniaxial tension tests at temperatures ranging from room temperature to 525°C. Elastic–nearly perfectly plastic stress–strain behavior is observed at all temperatures. Tension–compression asymmetry of the room temperature yield stress is also observed. These characteristics are in agreement with those recently reported in the literature for single-phase NC materials. The flow stress (700 MPa at room temperature) decreases dramatically with increasing temperature. Testing of material following thermal exposures suggests that microstructural coarsening alone cannot account for the decrease in strength with increasing temperature. From a coarsening standpoint, this material appears to be very thermally stable. The ductility is influenced by several factors. Low levels of internal porosity along with the presence of fine oxide and carbide dispersoids contribute to lower ductility. The absence of work hardening exhibited by the Al–10Ti–2Cu also leads to reduced strain to failure. The features observed on fracture surfaces suggest that fracture occurs by the nucleation and growth of voids at particle–matrix interfaces. Evidence of fracture along prior powder particle boundaries is present as well. The microstructure consists primarily of regions containing grains measuring in the range 30–70 nm. Large grained regions consisting of nominally pure Al ranging in size from 300 to 500 nm are also present. No evidence of dislocation activity within either the fine or large grained regions can be found in the as extruded material. Specimens deformed at room temperature and 93°C reveal evidence of dislocation activity within the large grain regions. Dislocation configurations suggest an Orowan bypass mechanism. No dislocations are found within the 30–70 nm size grains following tensile deformation.  相似文献   

18.
Multilayered metallic composites have attracted great interest because of their excellent characteristics. In recent years, the mechanical behavior of Cu/Ti composites is described in terms of macroscopic or mesoscopic scales, but the micromechanism regarding dislocation slip, twinning and shear banding at heterogeneous interfaces remains unclear. In this work, the molecular dynamics method is used to study the uniaxial tensile and plane strain compression deformation of the Cu/Ti multilayered composites with characteristic initial crystal orientations. The simulation results show that under the tensile load, dislocations are preferentially nucleated at the heterogeneous interface between Cu and Ti, and then slip along {111} plane within the Cu layers. The corresponding mechanism is confined layer slip. With the multiplication of dislocations, dislocations interact with each other, and intrinsic stacking faults and deformation twins are formed in Cu layers. However, no dislocation slip or twinning is activated within the Ti layers at this stage of deformation. As the load increases, the stress concentration at the Cu/Ti interface leads to the fracture of the composites. For the composites under plane strain compression, the stress concentration at the Cu/Ti interface triggers the formation of shear bands in the Ti layer, and there are only very limited dislocations within the shear bands and their adjacent area. With the increase of applied strain, the common action of various deformation mechanisms causes the grains to rotate, and the disorder degree of complex atoms increases. In addition, the micro-plastic deformation mechanism and mechanical properties of Cu/Ti complex with different initial orientations and strain rates are significantly different. The results reveal the microscopic deformation mechanism of the laminated composites containing hcp metals.  相似文献   

19.
针对钛合金在航天军工领域的服役特点,利用万能材料试验机以及Hopkinson压杆对某α+β双相钛合金薄板静态及动态材料行为进行研究,给出了不同热处理制度下材料的应力应变关系,观察了材料的微观组织特征。研究结果表明,对于α+β双相钛合金薄板,垂直轧向的屈服强度高于平行轧向屈服强度,材料无明显加工硬化,屈服强度拉压不对称;高应变速率加载情况下材料并无明显应变强化,材料破坏表现为沿45°方向的剪断型破坏;强迫剪切过程中热处理前后均无明显绝热剪切带产生,材料发生沿45°方向流动,表现出良好塑性。  相似文献   

20.
The microstructures and tensile properties of Cu–3 wt%Ag–0.5 wt%Zr alloy sheets under different aging treatments are investigated in this research. As one kind of precipitate, Ag nanoparticles with coherent orientation relationship with matrix precipitate. However, after the peak-age point, most of Ag nanoparticles grow into short rod shape with the interface translating to semi-coherent, which leads to the lower strength of over-aging sample. The yield strength is estimated by considering solid solute, grain boundary and precipitation strengthening mechanisms. The result shows that the Ag precipitates provide the main strengthening role. Then a constitutive equation representing the evolution of dislocation density with plastic strain is built by considering work-hardening behavior coming from shearable and non-shearable precipitates which is mainly the particles containing Zr. The flow stress contributed by shearable particle hardening is higher than that of non-shearable one. Due to the coarsening of grain boundary precipitates and low rate of damage accumulation of these non-shearable particles, the micro-cracks nucleate easily at grain boundary which leads to intergranular fracture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号