首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present paper experimentally investigates the effect of non-condensable gases (NCGs) on the thermal performance of the miniature loop heat pipe (mLHP). Copper mLHP with the flat disk shaped evaporator, 30 mm diameter and 10 mm thick, and fin-and-tube type condenser, 50 mm length and 10 mm height, located at a distance of 150 mm was used in the study. The device which was designed for the thermal control of computer microprocessor was capable of transferring maximum heat load of 70 W while maintaining evaporator temperature below 100 °C limit for electronic equipments. Water was used as the heat transfer fluid inside the mLHP. All the tests were conducted with the evaporator and condenser at the same horizontal level. Simple methods were devised to detect and purge the generated NCG out of the loop heat pipe without disassembling the system. Experiments conducted to classify the trends in the NCG production and storage revealed that majority of the gas is generated in the first few thermal runs and is accumulated in the compensation chamber. Sensitivity tests show that overall effect of the NCG is to elevate the steady-state operating temperature of the loop and increase the start-up time required by the evaporator to achieve stable conditions for the given heat load. As an outcomes of the research work, it can be concluded that mLHPs are more tolerable to the NCGs than conventional heat pipes due to the presence of compensation chamber that can accumulate most of the released gas without major performance degradation.  相似文献   

2.
Two special biporous wicks are adopted in stainless-steel–ammonia loop heat pipes (LHPs) with flat evaporator to enhance their heat transfer performances. The experimental results demonstrate that thermal and hydraulic characteristics of the wick with porosity of 69% (in LHP 2) are better than that of the wick with porosity of 65% (in LHP 1). The maximum heat loads of LHP 1 and LHP 2 could, respectively, reach 120 W (heat flux 11.8 W/cm2) and 130 W (12.8 W/cm2) at the allowable evaporator temperature below 60 °C. Meanwhile, they can start up at heat load as low as 2.5 W. The LHPs show very fast and smooth response to heat load and operate stably without obvious temperature oscillation. The total thermal resistances of the LHPs vary between 1.47 and 0.33 °C/W at heat load ranging from 10 to 130 W.  相似文献   

3.
The counter current heat exchanger theory with periodic inlet temperatures has been applied to analyze the thermal performance of a water heating system. The theoretical results obtained are in agreement with the experimental data reported in the literature.  相似文献   

4.
Aiming at future space applications, a miniature cryogenic loop heat pipe (CLHP) with nitrogen as the working fluid was designed, whose condenser could provide the interface with the cold finger of cryocooler, and its operating characteristics were experimentally investigated in this work. Based on the experimental results, important conclusions below have been drawn: (1) with only 2.5 W applied to the secondary evaporator, the CLHP can realize the supercritical startup, and the larger the heat load applied to the secondary evaporator, the sooner the temperature drop process of the primary evaporator; (2) when the heat load applied to the primary evaporator is no less than 3 W, the primary evaporator can operate independently; whereas when it is smaller than 3 W, the secondary evaporator must be kept in operation to assist the normal operation of the primary evaporator; (3) the CLHP has a heat transport capacity of 12 W × 0.56 m, and its thermal resistance decreases with the increase of the heat load applied to the primary evaporator; (4) the CLHP has the ability to operate with a small heat load applied to the primary evaporator for a long time, and manifests good thermal control performance.  相似文献   

5.
In recent years the requirement for reduction of energy consumption has been increasing to solve the problems of global warming and the shortage of petroleum resources. A latent heat recovery type heat exchanger is one of the effective methods of improving thermal efficiency by recovering latent heat. This paper described the heat transfer and pressure loss characteristics of a latent heat recovery type heat exchanger having a wing fin (fin pitch: 4 mm, fin length: 65 mm). These were clarified by measuring the exchange heat quantity, the pressure loss of heat exchanger, and the heat transfer coefficient between outer fin surface and gas. The effects of condensate behavior in the fins on heat transfer and pressure loss characteristics were clarified. Furthermore, the equations for predicting the heat transfer coefficient and pressure loss which are necessary in the design of the heat exchanger were proposed. ©2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(4): 215–229, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20154  相似文献   

6.
This study was performed to investigate the heat extraction characteristics from shallow geothermal resources using a coaxial heat exchanger. First, a computer simulation program for a coaxial heat exchanger was checked and verified by laboratory experiments. After inspecting the effectiveness of the computer program described herein, a numerical simulation for a real scale model was conducted under the condition that the heat transfer mechanism in the stratum was heat conduction. Unsteady heat extraction characteristics are presented herein, and the effects of the tube material, inner diameter, and circular modes on the heat extraction rate are discussed. From the computer results it was found that the heat extraction performance using a coaxial heat exchanger greatly depended on the factors mentioned above in the range of the parameters covered in this study. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 34(7): 496–513, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20083  相似文献   

7.
An experimental loop representing a compact plate heat exchanger was built up to study the two-phase distribution in the different header channels. The test section consists of a cylindrical horizontal header and eight rectangular channels in which the liquid and vapour flow rates are evaluated and the flow inside the header can be visualized. Several geometrical and functional parameters to study the two-phase distribution were tested using “HFE 7100” at a temperature close to 57 °C and a pressure close to 100 kPa. A flow pattern map in the header was built up using the different entry parameters on which a quantitative understanding of the two-phase distribution could be deduced.  相似文献   

8.
设计了一种矩形微槽群换热器,分别对单个槽和整个换热器传热过程进行了数值模拟。对不同流量以及不同热流下的流场和温度场进行模拟,并与理论分析结果比较,两者相吻合。分析结果表明,微换热器的热阻随着流量的增大而变小,温度变低。当流量为200 mg/s时,微换热器最高温升为47 K,表明当达到一定流量的时候,微换热器温升能控制在有效地范围内,能很好地保证微器件的工作状态。  相似文献   

9.
The present paper deals with an analysis of a forced circulation closed loop solar water heating system; withdrawal of hot water of constant flow rate from a storage tank through a heat exchanger is considered. The effect of flow rate and heat exchanger length on the performance has also been discussed for a typical set of parameters and for a typical cold day in Delhi (26 January 1980).  相似文献   

10.
文章针对日光温室环境下土壤空气换热器的换热特性进行了研究。首先通过监测土壤空气换热器沿程空气温度的全天变化,分析了试验工况下土壤空气换热器的动态换热过程及系统性能变化规律。研究结果表明,在试验工况下,土壤空气换热器系统的性能系数(COP)可高达24.1。在此基础上,通过建立土壤空气换热器的非稳态换热模型,模拟研究不同的入口风速对土壤空气换热器换热性能的影响。研究结果表明,当换热管入口空气温度相同时,随着入口风速的增加,土壤空气换热器进出口空气温度差逐渐减小,出口处空气温度与土壤温度差值逐渐增大,这意味着土壤空气换热器有效换热长度逐渐变长。在此过程中,土壤空气换热器系统的换热量和COP随着入口空气风速的增加呈现出先增后减的规律。通过模拟结果可知,当入口风速达到5.5 m/s时,土壤空气换热器系统的换热量与COP均达到最大值。  相似文献   

11.
Building legislation along with environmental and comfort concerns are increasingly driving designers of building services and air conditioning equipment towards more energy efficient solutions. Heat pipe technology is emerging as a viable, efficient and environmentally-sound technology for applications in efficient air handling unit designs. In this paper, an experimental investigation on the thermal performance of an air-to-air heat exchanger, which utilises heat pipe technology, will be presented. The heat exchanger consisted of 7 loop heat pipes with finned evaporator and condenser sections. The heat exchanger was fully instrumented to test for the effect of the variation of heat load and the air velocity, through the heat exchanger, on the overall thermal resistance of the loops. The values of the effectiveness of the heat pipe heat exchanger are shown to vary with the air velocity as expected but the results also allow the prediction of effectiveness variation with the heat load and operating temperature (previously assumed to be constant). The results allow an interpretation of the overall thermal performance of each loop heat pipe as a function of the load and air velocity. The paper concludes with a theoretical analysis of the energy savings that would be expected when utilising the technology in a representative application.  相似文献   

12.
在锅炉螺旋形翅片换热器优化设计问题的研究中,为了获得某电厂600MW机组换热器的更准确的阻力特性,通过理论计算和相似模型试验对给定结构的螺旋形翅片换热器进行研究,结果表明:不同工况下,试验获得的阻力均小于计算数据。试验结论可为螺旋形翅片管换热器的设计计算提供参考,对同类型电厂改造具有一定的借鉴意义。  相似文献   

13.
Improving heat exchanger's performance by increasing the overall heat transfer as well as minimising pressure drop is one of the promising fields of research to focus on. Nanofluids with higher thermal conductivity and better thermophysical properties can be applied in heat exchanger to increase the heat transfer rate. In the present study SiO2, TiO2 and Al2O3 are applied in a plate heat exchanger and the effects on thermophysical properties and heat transfer characteristics are compared with the base fluid. Since it is desired to minimize the pressure drop, the influence of nanofluid application on pressure drop and entropy generation is investigated. It is concluded that the thermal conductivity, heat transfer coefficient and heat transfer rate of the fluid increase by adding the nanoparticles and TiO2 and Al2O3 result in higher thermophysical properties in comparison with SiO2. The highest overall heat transfer coefficient was achieved by Al2O3 nanofluid, which was 308.69 W/m2.K in 0.2% nanoparticle concentration. The related heat transfer rate was improved around 30% compared to SiO2 nanofluid. In terms of pressure drop, SiO2 shows the lowest pressure drop, and it was around 50% smaller than the pressure drop in case of using TiO2 and Al2O3.  相似文献   

14.
Heat transfer characteristics of a double-pipe helical heat exchanger were numerically studied to determine the effect of fluid thermal properties on the heat transfer. Two studies were performed; the first with three different Prandtl numbers (7.0, 12.8, and 70.3) and the second with thermally dependent thermal conductivities. Thermal conductivities of the fluid were based on a linear relationship with the fluid temperature. Six different fluid dependencies were modeled. Both parallel flow and counterflow configurations were used for the second study.Results from the first study showed that the inner Nusselt number was dependent on the Prandtl number, with a greater dependency at lower Dean numbers; this was attributed to changing hydrodynamic and thermal entry lengths. Nusselt number correlations based on the Prandtl number and a modified Dean number are presented for the heat transfer in the annulus. Results from the second part of the study showed that the Nusselt number correlated better using a modified Dean number. The counterflow configuration had higher heat transfer rates than the parallel flow, but the ratio of these differences was not different when comparing thermally dependent properties and thermally independent properties.  相似文献   

15.
《节能》2016,(1)
二氧化碳因其具有良好的环境性能及其在跨临界循环运行下所具有的独特热力学优势,一直是制冷、空调、热泵行业的研究热点。为了研究二氧化碳跨临界循环热泵热水器的系统运行特性,项目组设计并搭建了水源型二氧化碳热泵热水器测试系统,测试了在不同气冷器进、出水温度,不同蒸发器进水温度及不同电子膨胀阀开度下,系统运行时性能系数(COP)、制热量及制冷量的变化值,初步掌握了二氧化碳跨临界循环热泵热水器系统的运行特性。  相似文献   

16.
A mathematical model to investigate the oscillating motion characteristics of liquid slugs and vapor plugs/bubbles in oscillating heat pipes (OHPs) was developed considering the contact angle hysteresis (CAH) and interconnected-tube induced pressure fluctuations. Results show that a short period less than 1 s is available to attain the steady state after startup and then the oscillation amplitudes and frequencies for both of slug/bubble displacement and velocity are kept fixed. The slug/bubble displacement and velocity display quasi-sine oscillating waves with small pressure fluctuations induced by the interconnected-tube. However, small oscillation waves are superimposed on a main quasi-sine oscillation wave and cause a chaotic oscillating behavior of slug/bubble inside the OHP if the induced pressure fluctuation is large enough. Besides, the effects of filling ratio, tube length, inner diameter, temperature difference between the evaporator and condenser sections, and working fluid on the oscillating motion were numerically analyzed and discussed. The numerical model provides a physical insight to understand the operational mechanism of OHPs under the microgravity condition.  相似文献   

17.
This work is focused on the experimental study of the performance of a heat exchanger designed for aero engine applications. The heat exchanger is operating as a heat recuperator by taking advantage of the thermal energy of the exhaust gas of the aero engine in order to obtain a better combustion with less pollutant emissions. The experimental study has been performed in a wind-tunnel by taking detailed flow and thermal measurements on a 1:1 model of the heat exchanger under various operating conditions described by the hot gas inlet mass flow rates and its spatial direction (different angles of attack and inclination) towards the heat exchanger. The hot gas has been modeled with preheated air. Six sets of measurements have been carried-out for different hot gas inlet and outlet temperatures, including also isothermal measurements without any heat transfer in order to have a reference point for the pressure drop of the flow through the device. The experimental results showed that the effect of the angle of attack on the pressure drop is significant while the effect of the angle of inclination is negligible. Additionally, the pressure drop through the heat exchanger is greatly affected by the heat transfer.  相似文献   

18.
《Applied Thermal Engineering》2002,22(17):1919-1930
A new kind of lamellar-type heat exchanger, for utilization of the heat of flue gases, obtained by burning of natural gas is presented. It is especially appropriate for heating of the feed water for boilers and for district heating network. The influence of the flow rates of both phases, the coefficient of air excess in the burner of the boiler, initial and exit temperature of the phases, and specific dimensions of the heat exchanger on its efficiency is studied. The investigations are carried out using a mathematical model, based on heat and mass transfer differential balance equations. It is shown that this invention surpasses all existing technical solutions from economical point of view.  相似文献   

19.
The operating mechanism of the pulsating heat pipe (PHP) is not well understood and the present technology cannot predict required design parameters for a given task. The aim of research work presented in this paper is to better understand the operation regimes of the PHP through experimental investigations. A series of experiments were conducted on a closed loop PHP with 5 turns made of copper capillary tube of 2 mm in inner diameter. Two different working fluids viz. ethanol and acetone were employed. The operating characteristics were studied for the variation of heat input, filling ratio (FR) and inclination angle of the tested device. The results strongly demonstrate the effect of the filling ratio of the working fluid on the operational stability and heat transfer capability of the device. Important insight into the operational characteristics of PHP has been obtained.  相似文献   

20.
板式换热器传热和阻力特性的实验研究   总被引:2,自引:0,他引:2  
利用搭建的液-液型板式换热器试验平台,根据实验数据运用定性雷诺数法拟合出传热关联式,找出Nu与摩擦因子f之间的通用关系式,为板式换热器的设计计算提供了依据。运用传热量与功率的消耗比来评价板式换热器的性能,找出了影响其性能的主要因素,进一步澄清了单纯依靠提高流速来增加传热性能是不经济的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号