首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biosorption of heavy metals is an interesting approach to treat industrial wastewaters by an environmentally friendly system. Spirulina platensis biomass, an effective biosorbent for cations, cannot be used to adsorb chromate due to its negatively charged surface close to neutral conditions; therefore, methylation of biomass was performed to increase its adsorption capacity under these conditions. Batch adsorption tests carried out varying both Cr(VI) and methylated biomass concentrations showed that 2–4 g l?1 of biosorbent were able to remove Cr(VI) with efficiency ≥80%, while higher Cr(VI) levels (43–50 mg l?1) showed low removal efficiency. The model of Langmuir was shown to describe the adsorption phenomenon better than the Freundlich one. The values of the overall adsorption capacity of methylated biomass suggested that increased biosorbent availability does not necessarily correspond to larger amount of adsorbed metal. FT-IR spectra of dried and methylated biomass of S. platensis allowed us monitoring the efficiency of the methylation process through the analysis of CH and COO? vibrational stretching modes, taken as diagnostic of this process.  相似文献   

2.
The adsorption of bromophenol red (BPR) onto three adsorbents including palladium, silver and zinc oxide nanoparticles loaded on activated carbon (Pd-NP-AC, Ag-NP-AC and ZnO-NP-AC) in a batch system has been studied and the influence of various parameters has been optimized. The influence of time on removal of BPR on all adsorbent was investigated and experimental data were analyzed by four kinetic models including pseudo first and second-order, Elovich and the intraparticle diffusion equations. Following fitting the experimental data to these models, the respective parameters of each model such as rate constants, equilibrium adsorption capacities and correlation coefficients for each model were investigated and based on well known criterion their applicability was judged. It was seen that the adsorption of BPR onto all adsorbents sufficiently described by the pseudo second-order equation in addition to interparticle diffusion model. The adsorption of BPR on all adsorbent was investigated at various concentration of dye and the experimental equilibrium data were analyzed and fitted to the Langmuir, Freundlich, Tempkin, Dubinin, and Radushkevich equations. A single stage in batch process was efficient and suitable for all adsorbents using the Langmuir isotherm with maximum adsorption of 143 mg g?1 for Pd-NP-AC, 250 mg g?1 for Ag-NP-AC and 200 mg g?1 for ZnO-NR-AC. Thermodynamic parameters such as ΔG°, ΔH°, and ΔS° for Pd-NP-AC adsorbent were calculated.  相似文献   

3.
Series of resin selection experiments were carried out and the KIP210 strong base anion exchange resin was confirmed to have the maximum equilibrium adsorption capacity to remove Cr(VI) from wastewater. The adsorption thermodynamics and kinetics of Cr(VI) on KIP210 resin were investigated completely and systematically. The static experiments were performed to study the effects of various parameters, such as shaking speed, resin dosage and pH during the adsorption process. The results indicate that the effect of external diffusion is eliminated at 160 rpm, the best pH value is 3.0 and the removal percentage of Cr(VI) increases with the increase of the resin dosage. The adsorption of Cr(VI) on KIP210 agrees well with the Langmuir isotherm and the adsorption parameters of thermodynamics are ΔH = 26.5 kJ mol−1, ΔS = 126.7 J mol−1 K−1 and ΔG < 0. It demonstrates that the adsorption of Cr(VI) on KIP210 is a spontaneously endothermic physisorption process. Moreover, the adsorption process can be described well by a pseudo-second-order kinetic model and the activation energy is 30.9 kJ mol−1. The kinetic analysis showed that the adsorption rate is controlled by intraparticle diffusion. The resin is successfully regenerated using the NaOH solutions.  相似文献   

4.
Phenol removal from aqueous solution was studied employing chitin as low cost biosorbent. Initial biosorption tests carried out in the pH range 2–10 pointed out an optimum pH of 2. Temperature and initial phenol concentration were then varied in the ranges 15  T  50 °C and 10.4  C0  90.8 mg L−1, respectively. The good applicability of Langmuir, Freundlich and Temkin models (R2 = 0.990–0.993) to describe equilibrium isotherms suggested an intermediate mono-/multilayer biosorption mechanism along with a semi-homogeneous architecture of biosorbent surface. Biosorption capacity progressively increased from 3.56 to 12.7 mg g−1 when starting phenol concentration was raised from 10.4 to 90.8 mg L−1, and the related sorption kinetics was investigated by pseudo first-order, pseudo second-order and intraparticle diffusion models. The pseudo second-order model, which showed the best fit of experimental data (R2 = 0.999), allowed estimating a second-order rate constant of 0.151 g mg−1 h−1 and a theoretical sorption capacity of 7.63 mg g−1. Phenol biosorption capacity increased with temperature up to a maximum value, beyond which it decreased, suggesting the occurrence of a thermoinactivation equilibrium. Finally, to identify the main functional groups involved in phenol biosorption, both raw and phenol-bound materials were explored by FT-IR spectroscopy.  相似文献   

5.
Ting-Chu Hsu 《Fuel》2008,87(13-14):3040-3045
In this study, we found the raw coal fly ash (CFA) that had not been subjected to any pretreatment process had superior adsorbing ability for the anionic dye Acid Red 1 (AR1) than did two modified coal fly ashes (CFA-600 and CFA-NaOH). The adsorption capacities followed the order CFA > CFA-600 > CFA-NaOH, and they each increased upon increasing the temperature (60 °C > 45 °C > 30 °C). The adsorptions of AR1 onto CFA, CFA-600, and CFA-NaOH all followed pseudo-second-order kinetics. The isotherms for the adsorption of AR1 onto the raw and modified coal fly ashes fit the Langmuir isotherm quite well; the adsorption capacities of CFA, CFA-600, and CFA-NaOH for AR1 were 92.59–103.09, 32.79–52.63, and 12.66–25.12 mg g?1, respectively. According to the positive values of Δ and Δ, these adsorptions were endothermic processes. The ARE and EABS error function methods provided the best parameters for the Langmuir isotherms and pseudo-second-order equations, respectively, in the AR1–CFA adsorption system.  相似文献   

6.
This work deals with the preparation of ceramic microfiltration membrane from inexpensive raw materials such as kaolin, quartz, calcium carbonate by uniaxial dry compaction method. The prepared green membrane was initially dried at 100 °C for 24 h, 200 °C for 24 h and finally sintered at 900 °C for 6 h. The properties of the membrane such as porosity, flexural strength, chemical stability and hydraulic permeability were investigated. The fabricated membrane possessed an average pore diameter of 1.32 μm, porosity of 30% and flexural strength of 34 MPa. Furthermore, the chemical stability of the membrane was found to be excellent. Eventually, the separation performance of the membrane in terms of flux and removal of chromium(VI) ion using baker's yeast biomass as a function of applied pressure, pH, metal ion concentration and biomass dosage was also studied. The removal of Cr(VI) was found to be strongly dependent on the initial pH of the solution. At lower pH, the metal solution shows higher removal due to higher binding of the metal ion with biomass. It was also observed that the removal of Cr(VI) ion increases with increasing the biomass concentration and decreases with increasing the metal ion concentration. The removal of Cr(VI) was found to be independent of the applied pressure. The maximum removal of Cr(VI) was found to be 94% with the permeate flux of 2.07 × 10-5 (m3/m2 s) for a metal solution concentration of 100 mg/L.  相似文献   

7.
In this study, biosorption of cadmium (II) ions from aqueous solutions by a glyphosate degrading bacterium, Ochrobactrum sp. GDOS, was investigated in batch conditions. The isolate was able to utilize 3 mM GP as the sole phosphorous source, favorable to bacterium growth and survival. The effect of different basic parameters such as initial pH, contact time, initial concentrations of cadmium ion and temperature on cadmium uptake was evaluated. The adsorption process for Cd (II) is well fitted with Langmuir adsorption isotherm. Experimental data were also tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. Maximum metal uptake qmax was obtained as 83.33 mg g−1. The sorption process of cadmium onto the Ochrobactrum sp. GDOS biomass followed second-order rate kinetic (R2 = 0.9986). A high desorption efficiency was obtained in pH 2. Reusability of the biomass was examined under successive biosorption–desorption cycle repeated thrice. The characteristics of the possible interactions between biosorbent and metal ions were also evaluated by scanning electron microscope (SEM), Fourier transform infrared (FT-IR) and X-ray diffraction analysis.  相似文献   

8.
Fig sawdust was used as a precursor for the production of activated carbon by chemical activation with H3PO4. The developed Fig sawdust activated carbon (FSAC) was used as a biosorbent for the removal of Pb(II) from aqueous solution. Highest adsorption of Pb(II) (95.8%) was found at pH 4. Equilibrium data fitted very well with the Langmuir isotherm model. Maximum adsorption capacity was determined 80.645 mg g−1 at pH 4. Kinetic studies demonstrated that the adsorption followed a pseudo second order kinetics model. The negative value of ΔG° confirmed the feasibility and spontaneity of FSAC for Pb(II) adsorption.  相似文献   

9.
Studies on the removal of copper by adsorption on modified sand have been investigated. The adsorbent was characterized by XRD, FTIR and SEM. Removal of Cu was carried out in batch mode. The values of thermodynamic parameters namely ΔG0, ΔH0 and ΔS0 at 25 °C were found to be −0.230 kcal−1 mol−1, +4.73 kcal−1 mol−1 and +16.646 cal K−1 mol−1, respectively. The process of removal was governed by pseudo second order rate equation and value of k2 was found to be 0.122 g mg−1 min−1 at 25 °C. The resultant data can serve as baseline data for designing treatment plants at industrial scale.  相似文献   

10.
In this research, olive stone was used as precursor for the development of new biosorbents for lead ions. Chemical treatments were analyzed in terms of their effects on physical–chemical properties and kinetics of lead removal. A kinetic study of the biosorption of lead ions by olive stone was analyzed according to six different kinetic models (pseudo first, pseudo second, pseudo n-order, Elovich, solid diffusion and double exponential models). The biosorption kinetic data were successfully described with pseudo-nth order and double exponential models for all biosorbents. The double exponential model allowed estimating the values of external and internal mass transfer coefficients. The values of external mass transfer coefficient (ke) ranged from 42.62 × 10−6 to 508.3 × 10−6 m min−1 and the internal mass transfer coefficient (ki) from 3.76 × 10−6 to 73.4 × 10−6 m min−1. On the other hand, the analysis of experimental data showed that chemical treatments of the biomass led to increase biosorption capacity of the native biomass.  相似文献   

11.
A low cost activated carbon was synthesized from coconut coir and was applied for the removal of malachite green (MG) from its aqueous solutions. Characterization of the adsorbent was carried out and BET surface area of the adsorbent was found to be 205.27 m2/g. The process of removal of MG was better governed by second order kinetics with a rate constant of 0.21 g mg?1 min?1 at 323 K. The coefficient of mass transfer was found to be 3.70 × 10?5 cm s?1. The value of ΔG° was found to be negative indicating feasibility and spontaneity of the adsorption process.  相似文献   

12.
Cadmium hydroxide nanowires loaded on activated carbon (Cd(OH)2-NW-AC) was applied for removal of malachite green (MG) and sunset yellow (SY) in single and binary component systems. This novel material was characterized and identified by different techniques such as Brunauer, Emmett and Teller (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis. Unique properties such as high surface area (>1271 m2 g−1) and low pore size (<35 Å) and average particle size lower than 50 Å in addition to high reactive atom and presence of various functional groups make it possible for efficient removal of these two dyes. In the single component system in this study, maximum adsorption capacity of 80.6 for SY and 19.0 mg g−1 for MG at 25 °C was reported. The Langmuir model had very well fit with the experimental data (R2 > 0.996). A better agreement between the adsorption equilibrium data and mono-component Langmuir isotherm model was found. The kinetics of adsorption for single and binary mixture solutions at different initial dye concentrations were evaluated by the nonlinear first-order and second-order models. The second-order kinetic model had very well fit with the dynamical adsorption behavior of a single dye for lower and higher initial dye concentrations. SY and MG without spectra overlapping were chosen and analyzed with high accuracy in binary solutions. The effect of multi-solute systems on the adsorption capacity was investigated. The isotherm constants for SY and MG were also calculated in binary component systems at concentrations within moderate ranges, the Langmuir isotherm model satisfactorily predicted multi-component adsorption equilibrium data. The competitive adsorption favored the SY in the A mixture solution (both SY and MG concentration at 10 mg L−1) and B mixture solution (25 mg L−1 of SY and 10 mg L−1 of MG). Also, in both cases, kinetic data was fairly described by two-step diffusion model. An endothermic and spontaneous nature for the adsorption of the dyes studied were shown from thermodynamic parameters in single and binary component systems.  相似文献   

13.
Calcined mussel shells have been used as new low cost and eco-friendly biosorbent for the removal of safranin as cationic dye from aqueous solutions by biosorption technique. Batch mode experiments were conducted using various parameters such as pH, contact time, biosorbent amount and safranin concentration. Removal efficiency of safranin by the calcined mussel shells attained 87.56% using 200 mg of biosorbent and 150 mg/L as safranin concentration and for a pH above 9.2. Four kinetic models are used, pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion for the design and the optimization treatment. The kinetic analysis showed that the pseudo-second-order model had the best fit to the experimental data. Biosorption isotherms were also investigated using Langmuir, Freundlich and Temkin models. The experimental data fitted very well with both Langmuir and Freundlich isotherm models. Thermodynamic biosorption processes were found to be spontaneous, endothermic. The Gibbs energy ΔG° decreased from −1.956 kJ/mol to −2.456 kJ/mol with increase in temperature from 298 K to 313 K indicating a increase in feasibility of biosorption at higher temperature. Accordingly, calcined mussel shells were shown to be a very efficient, eco-friendly and low cost biosorbent and a promising alternative for removal dyes from aqueous solutions.  相似文献   

14.
Photocatalytic reduction of Cr(VI) to Cr(III) in aqueous solution containing ZnO or ZSM-5 zeolite under ambient condition was studied by using oxalate as model organic compound in the natural environment. ZSM-5 zeolite was characterized by X-ray diffraction (XRD), and point of zero net proton charge (PZNPC) titration. The effect of illumination time, mass content of catalyst (m/V), Cr(VI) initial concentrations, pH, ionic strength, and oxalate concentrations on the photocatalytic reduction of Cr(VI) was determined. The results indicate that the PZNPC of ZSM-5 zeolite is at pH 3.6 ± 0.1. At C[Cr(VI)(initial)] = 2.00 × 10?4 mol/L, pH 7.5 ± 0.1 and after illumination time of 24 h, the reduction of Cr(VI) were 1.1 × 10?5 mol/L (no ZSM-5 zeolite, 4.0 × 10?3 mol/L oxalate) and 1.0 × 10?5 mol/L (0.4 g/L ZSM-5 zeolite, no oxalate), respectively; whereas the reduction of Cr(VI) achieved 1.0 × 10?4 mol/L in the presence of 0.4 g/L ZSM-5 zeolite and 4.0 × 10?3 mol/L oxalate. The removal of Cr(VI) from solution is dependent on pH value. The results are important for the application of zeolites in the treatment of Cr(VI) polluted solution in the natural environment.  相似文献   

15.
This study aimed at immobilizing Reactive Blue 2 (RB 2) dye in chitosan microspheres through nucleophilic substitution reaction. The adsorbent chemical modification was confirmed by Raman spectroscopy and thermogravimetric analysis. This adsorption study was carried out with Cu(II) and Ni(II) ions and indicated a pH dependence, while the maximum adsorption occurred around pH 7.0 and 8.5, respectively. The pseudo second-order kinetic model resulted in the best fit with experimental data obtained from Cu(II) (R = 0.997) and Ni(II) (R = 0.995), also providing a rate constant, k2, of 4.85 × 10−4 and 3.81 × 10−4 g (mg min)−1, respectively, thus suggesting that adsorption rate of metal ions by chitosan-RB 2 depends on the concentration of ions on adsorbent surface, as well as on their concentration at equilibrium. The Langmuir and Freundlich isotherm models were employed in the analysis of the experimental data for the adsorption, in the form of linearized equations. Langmuir model resulted in the best fit for both metals and maximum adsorption was 57.0 mg g−1 (0.90 mmol g−1) for Cu(II) and 11.2 mg g−1 (0.19 mmol g−1) for Ni(II). The Cu(II) and Ni(II) ions were desorbed from chitosan-RB 2 with aqueous solutions of EDTA and H2SO4, respectively.  相似文献   

16.
The macroalgae Sargassum muticum was selected for the treatment of solutions containing Cr(VI). Very acidic pH values were established as optimal for Cr(VI) reduction. Algae chemical modification reduced equilibrium time to 4 h. First order kinetic model was used to describe the reduction kinetic of Cr(VI). A column experiment allowed to distinguish the processes occurring during Cr(VI) elimination: its reduction to Cr(III) and the subsequent adsorption of this species formed. Under the selected conditions the biomass was capable of reducing all the incoming Cr(VI) during 77 h. Industrial wastewaters from chrome plating industry were also tested for chromium removal.  相似文献   

17.
Different amounts of graphene oxide (GO) were incorporated to N,N-dimethylaminoethyl methacrylate (DMAEMA), fabricating a series of pH and temperature dual sensitive PDMAEMA/GO hybrid hydrogels by in situ polymerization. Their microscopic network structures as well as swelling properties and Cr(VI) adsorption were characterized. The equilibrium swelling ratios (ESR) of hydrogels increased significantly with 0.5 wt% GO feeding of DMAEMA amount, and then decreased with further GO loading increasing. All hydrogels showed obvious deswelling when pH value of swelling mediums increased from 5 to 10 gradually. At pH 7, hydrogels revealed slight ESR increment with temperature up to 50 °C, above which obvious deswelling occurred. In pH 8 buffer, 0.5 wt% of GO loading triggered lower critical solution temperature (LCST) to decrease by 3 °C, and 2–7 °C increment was observed when 1–6 wt% of GO was loaded, as compared with that of GO-free PDMAEMA hydrogel. Cr(VI) adsorption of hydrogels was also improved by the introduction of GO to some extent, and the maximum Cr(VI) adsorption of 180 mg/g was realized, indicating that the obtained PDMAEMA/GO hybrid hydrogels possess excellent adsorption performance.  相似文献   

18.
Biosorption of Cu(II) onto coconut shell, an agricultural biomaterial, was studied in a fixed-bed column. The Cu(II) biosorption column had the best performance at 10 mg L?1 inlet Cu(II) concentration, 10 mL min?1 flow rate and 20 cm bed depth. The equilibrium uptake of Cu(II) amounted to 7.25 mg g?1. The simulation of the breakthrough curve was successful with the BDST and Yoon–Nelson models, but the entire breakthrough curve was best predicted by the Clark model. The design of a fixed bed column for Cu(II) removal from wastewater by biosorption onto coconut shell can be done based on these models.  相似文献   

19.
In this study, a simple method was used to prepare modified biomass to improve its adsorption capacity for Cd2+ and Pb2+. The modified biomass of baker’s yeast was obtained by grafting polyamic acid, which was prepared via the reaction of pyromellitic dianhydride (PMDA) and lysine, onto the surface of glutaraldehyde-pretreated biomass at 50 °C for 3 h. The presence of polyamic acid on the biomass surface was verified by Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS), the morphologies of the biomass before and after modification were observed by microscope. Due to the high density of the carboxyl and amide groups on the biomass surface, the uptake for Cd2+ and Pb2+ showed a significant increase. According to Langmuir adsorption isotherm, the maximum uptake for Cd2+ and Pb2+ were 95.2 and 204.5 mg g−1, which were 15- and 11-fold for that obtained on the uncontaminated biomass. The kinetics for Cd2+ and Pb2+ adsorption followed the pseudo-second-order model. The results of FTIR and XPS revealed that carboxyl, amide, and hydroxyl groups on the biomass surface were involved in the adsorption of Cd2+ and Pb2+.  相似文献   

20.
In order to improve the interaction of MIL-101(Cr) with ibuprofen (IBU) and nimesulide (NMS), its functionalization with NH2 groups was proposed. MIL-101(Cr) showed a good loading capacity of IBU and NMS (850 and 443 mg g 1, respectively) and released 80% of IBU and 10% and NMS after 8 days. The 10% NH2-MIL-101(Cr) showed a higher loading capacity than MIL-101(Cr) (900 mg g 1 for IBU and 563 mg g 1 for NMS) and released lower amounts of IBU (70%) after 6 days and NMS (8%) after 8 days. The results show that the functionalization with NH2 groups improves the interactions between the materials and the drugs, which is of interest in the development of new controlled drug release devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号