首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Post-failure behavior of two mine pillars confined with backfill   总被引:1,自引:0,他引:1  
Researchers from the National Institute for Occupational Safety and Health used a series of instruments (borehole extensometers, earth pressure cells, and embedment strain gauges) to study the post-failure behavior of two pillars confined by backfill in a test section at the Buick Mine near Boss, MO, USA. Evaluation of these pillars was part of a research project to assess the safety of the test section when high-grade support pillars were mined.Data from borehole extensometers installed in several backfill-confined pillars and numerical modeling indicated that these pillars failed during extraction of the support pillars. Failure was corroborated by the post-yield pillar strain response in which the immediate elastic strain was negligible compared to the time-dependent strain component measured between blasting rounds.A three-dimensional, finite-element program with an elastic perfectly plastic material model was calibrated using extensometer data to estimate rock mass modulus and unconfined compressive strength. The resulting rock mass modulus was 45–60% of the average deformation modulus obtained from laboratory tests, and the calibrated compressive strength was 40% of average laboratory values. A rock mass modulus equal to 52% of the average laboratory deformation modulus was calculated using the rock mass rating (RMR) system. Rock mass strength was calculated with the generalized Hoek–Brown failure criterion for jointed rock and indicated that in situ strength was 33% of laboratory strength. Post-failure stresses calculated by the finite-element model were larger for confined pillars than post-failure stresses in unconfined pillars calculated using empirical plots. Data from the calibrated model provided a strain-hardening stress-versus-strain relationship. This knowledge is critical for the design of mines that use partially failed pillars to carry overburden load.  相似文献   

2.
Numerical estimation of pillar strength in coal mines   总被引:5,自引:0,他引:5  
Results of numerical modelling of failed and stable cases of pillars from Indian coal mines are reported in this paper. The complete procedure for modelling using FLAC3D in the strain-softening mode is given. It is shown that estimation of pillar strength is possible using numerical modelling and it may provide a viable, and perhaps better, alternative to earlier conventional pillar strength approaches. Methods are given to estimate the large number of input parameters required in the models. Because of the paucity of rock characterisation and in situ stress data, some approximations and assumptions were made in all the cases based on earlier experience. The modelling work leads to the conclusion that such data are necessary for the success of this method. Areas for further research related to this subject are given in the end.  相似文献   

3.
淮南矿区11–2煤顶板岩石单轴抗压强度预测模型构建   总被引:1,自引:0,他引:1  
为了探寻煤系地层泥岩和砂岩类单轴抗压强度和弹性模量间的关系,对顾北煤矿11–2煤顶板岩石进行室内单轴压缩试验,得到120组数据。采用SPSS19.0专业数理统计软件,以单轴抗压强度为因变量、弹性模量为自变量,分别建立线性函数、对数函数、二次函数、三次函数、指数函数和幂函数6种回归模型。经回归方程显著性检验、回归系数显著性检验、回归方程拟合优度、D-W检验、共线性检验和回归方程残差正态性、随机性检验,获得预测岩石单轴抗压强度的一元二次非线性回归预测模型。应用该模型对淮南矿区张集煤矿和潘二煤矿11–2煤顶板岩石单轴抗压强度进行预测与验证,结果表明预测值与试验值相符,该非线性回归预测模型可用于同一煤系地层岩石力学参数的预测。  相似文献   

4.
The central issue for pillar design in underground coal mining is the in situ uniaxial compressive strength (σ cm). The paper proposes a new method for estimating in situ uniaxial compressive strength in coal seams based on laboratory strength and P wave propagation velocity. It describes the collection of samples in the Bonito coal seam, Fontanella Mine, southern Brazil, the techniques used for the structural mapping of the coal seam and determination of seismic wave propagation velocity as well as the laboratory procedures used to determine the strength and ultrasonic wave velocity. The results obtained using the new methodology are compared with those from seven other techniques for estimating in situ rock mass uniaxial compressive strength.   相似文献   

5.
Coal pillars are usually loaded under combined compression-shear stresses at underground coal mines. Their long-term stability is critical to the utilization of underground structures, such as underground reservoirs at coal mines. In this study, a modified rock property testing system was used to explore the mechanical properties of coal specimens under quasi-static combined compression-shear loading conditions. The acoustic emission technique was applied to investigating the microcrack fracturing of coal specimens at various inclination angles. The experimental results show that specimen inclination has remarkable effects on the microcrack initiation, microcrack damage and ultimate failure of the coal specimen. The failure mode of the coal specimen tends to transit from axial splitting to shear failure with increasing specimen inclination, and its peak strength is closely associated with the microcrack damage threshold. In practice, it is recommended to consider coal strength under combined compression-shear loading when using empirical pillar strength formulae so that the effect of pillar inclination can be included.  相似文献   

6.
保护煤柱合理宽度(或停采位置)是确保地面重要设施长期稳定的关键。以山东某矿地面引水渠("南水北调"工程组成部分)下不规则下山保护煤柱宽度设计为工程背景,首先,通过分析煤柱变形可能引起地面建(构)筑物的破坏方式,提出了控制长期高应力作用下冲击煤层煤柱变形的原则:1走向方向煤柱不发生冲击失稳破坏;2走向方向煤柱不发生煤体长时强度降低而导致的失稳破坏;3倾斜方向煤柱保持均匀变形,从而使地面不发生明显拉伸破坏。其次,依据煤柱上方覆岩空间结构形式,建立了煤柱应力估算模型,提出了保持煤柱长期稳定及地面建筑安全的煤柱设计方法。最后,应用研究成果,分析了工程案例的煤柱应力、围岩稳定性和变形特征,并对该引水渠工程和井下开采设计进行了安全评估。该研究成果对类似开采条件下的保护煤柱宽度确定具有指导意义。  相似文献   

7.
基于声发射和数码摄像机录像系统,对不同高比的5组顶板砂岩–煤柱结构体进行单轴压缩试验,研究其力学特性及渐进破坏机制。顶板砂岩–煤柱结构体整体强度是远离交界面和交界面处砂岩、煤样强度的综合,摩擦效应加强了交界面处煤样强度,而削弱了交界面处砂岩强度;顶板–煤柱结构体宏观破坏起裂应力、单轴抗压强度和弹性模量均随岩煤高比递减而呈递减趋势;在同等条件下煤样原生裂纹越发育,顶板–煤柱结构体宏观破坏起裂应力、弹性模量和单轴抗压强度越小。顶板–煤柱结构体宏观破坏起裂导致应力–应变曲线出现阶梯状波动,AE信号出现峰值,大部分起裂位置位于煤样上,但当岩煤高比为9∶1时,交界面处砂岩首先破坏起裂。煤样内裂纹扩展和贯通使其变得较破碎且形成局部破坏,同时局部破坏的贯通导致煤样最终破坏;砂岩破坏是煤样内裂纹扩展贯通至其内部造成的,且由于裂纹扩展能力、速度及角度的不同,砂岩破坏形态呈劈裂破坏、剪切破坏或不发生破坏,随岩煤高比增大,煤样和砂岩破坏程度增大,煤样更加破碎。  相似文献   

8.
岩石剪胀角模型与验证   总被引:2,自引:2,他引:2  
Mohr-Coulomb模型和基于Mohr-Coulomb的应变软化模型均通常假设剪胀角为恒定值,然而这种假设不能正确表达岩石在破坏变形过程中的非线性体积变化行为。根据7种岩石类型在不同围压条件下的体积应变测量数据,结合塑性力学理论,采用非线性拟合方法建立能同时考虑围压和塑性剪切应变影响的剪胀角模型。分析模型的响应并结合岩石内部颗粒尺寸以及单轴抗压强度,将该模型划分为4种岩石类型:粗粒径硬岩、中粒径硬岩、中–细粒径软岩和细粒径软岩。根据FLAC应变软化模型中非关联塑性流动法则的计算原理,推导剪胀角模型中的塑性剪切应变与应变软化模型中塑性参数的关系,将剪胀角模型嵌入应变软化模型中,构建剪胀角模型模块。最后,采用建立的剪胀角模型预测Moura煤岩在三轴压缩条件下的体积应变–轴向应变关系曲线。研究结果表明,数值模拟与试验结果具有很好的一致性。  相似文献   

9.
An investigation was conducted on the overall burst-instability of isolated coal pillars by means of the possibility index diagnosis method(PIDM). First, the abutment pressure calculation model of the gob in side direction was established to derive the abutment pressure distribution curve of the isolated coal pillar. Second, the overall burst-instability ratio of the isolated coal pillars was defined. Finally, the PIDM was utilized to judge the possibility of overall burst-instability and recoverability of isolated coal pillars.The results show that an overall burst-instability may occur due to a large gob width or a small pillar width. If the width of the isolated coal pillar is not large enough, the shallow coal seam will be damaged at first, and then the high abutment pressure will be transferred to the deep coal seam, which may cause an overall burst-instability accident. This approach can be adopted to design widths of gobs and isolated coal pillars and to evaluate whether an existing isolated coal pillar is recoverable in skip-mining mines.  相似文献   

10.
以山东济宁高庄煤矿巨厚岩层条件下留设大煤柱的工作面回采安全性为背景,采用理论分析和工程实践等方法,研究巨厚岩层–煤柱系统的协调变形模型及其稳定性。主要研究内容和结论:(1)在满足煤柱顶板岩层断裂线因素和支承强度因素的情况下,煤柱能够"隔离"采空区并对巨厚岩层及其覆岩结构形成"支撑"作用;(2)以巨厚岩层挠曲变形和煤柱竖直方向"压缩"变形为基础,建立巨厚岩层–煤柱协调变形力学模型,分析煤柱竖直变形的应力来源、形式和整体协调变形机制,得到巨厚岩层–煤柱系统协调变形的应力–应变关系;(3)探讨巨厚岩层–煤柱系统失稳类型、判据和对井下动力灾害发生的影响,提出灾害防治技术。运用研究成果分析3上1102工作面采前巨厚岩层–煤柱系统稳定性,并对灾害进行预测,根据回采阶段微震监测结果与动力显现情况,初步验证了研究的合理性,通过实施针对性预防措施,最终实现了工作面"有震无灾"的安全回采目的。  相似文献   

11.
Due to the rapid industrialization and the development of the economy in each country, the demand for energy is increasing rapidly. The coal mines have to pace up the mining operations with large production to meet the energy demand. This requirement has led underground coal mines to go deeper with more difficult conditions, especially the mining hazards, such as large deformations, rockburst, coal burst, roof collapse, to name a few. Therefore, this study aims at investigating and predicting the stability of the roadways in underground coal mines exploited by longwall mining method, using various novel intelligent techniques based on physics-based optimization algorithms (i.e. multi-verse optimizer (MVO), equilibrium optimizer (EO), simulated annealing (SA), and Henry gas solubility optimization (HGSO)) and adaptive neuro-fuzzy inference system (ANFIS), named as MVO-ANFIS, EO-ANFIS, SA-ANFIS and HGSO-ANFIS models. Accordingly, 162 roof displacement events were investigated based on the characteristics of surrounding rocks, such as cohesion, Young's modulus, density, shear strength, angle of internal friction, uniaxial compressive strength, quench durability index, rock mass rating, and tensile strength. The MVO-ANFIS, EO-ANFIS, SA-ANFIS and HGSO-ANFIS models were then developed and evaluated based on this dataset for predicting roof displacements in roadways of underground mines. The results indicated that the proposed intelligent techniques could accurately predict the roof displacements in roadways of underground mines with an accuracy in the range of 83%–92%. Remarkably, the SA-ANFIS model yielded the most dominant accuracy (i.e. 92%). Based on the accurate predictions from the proposed techniques, the reinforced solutions can be timely suggested to ensure the stability of roadways during exploiting coal, especially in the underground coal mines exploited by the longwall mining.  相似文献   

12.
基于温克尔假设,突破把坚硬顶板视为弹性梁的传统思想,把坚硬顶板视为弹性板,将煤柱等效为连续均匀分布的支撑弹簧,从而形成煤柱-顶板相互作用系统;同时,将煤柱视为应变软化介质,采用近似的Weibull分布描述它的损伤本构模型,依据板壳理论和非线性动力学理论对采空区煤柱-顶板系统失稳机理进行了研究,得出了系统失稳的突变机制,并给出了系统失稳的数学判据和力学条件;最后,以马脊梁矿为工程实例进行分析。结果表明,理论分析值与工程实测数据吻合较好,为进一步研究煤柱-顶板相互作用系统和制定相关规范提供了重要参考。  相似文献   

13.
单轴压缩下岩石破坏后区的扰动状态概念分析   总被引:1,自引:1,他引:1  
岩石的应力一应变全过程曲线以峰值应力为界,通常分为破坏前区和破坏后区两个部分。岩石的破坏后区一般处于非稳定状态,其力学响应难以用经典强度理论来描述。由于岩石破坏后区的力学特性对诸多岩石工程,如地下巷道、矿柱和岩爆等具有重要的工程意义,因此,此方面的研究已受到理论界和工程界的重视。基于扰动状态概念理论,通过定义相对完整状态、完全调整状态和扰动函数,建立了能反映岩石材料破坏后区特性的本构模型。采用RMT-150B型岩石力学试验系统,对5种岩石试样(湖北大悟的红花岗岩、四川雅安的大理岩、江西贵溪的红砂岩、河南焦作的砂岩和花岗岩)进行了单轴压缩破坏试验,得到了各种岩石的应力-应变全过程曲线;利用扰动状态概念分析了各岩样变形和破坏的力学机理。在提出的岩石材料扰动状态本构模型的基础上,对上述几种岩石破坏后区的应力-应变关系进行了数值计算,计算结果与试验结果较为一致。因此,建立的本构模型在一定程度上能描述岩石破坏后区的力学特性。  相似文献   

14.
加载速率对石灰岩力学效应的试验研究   总被引:6,自引:0,他引:6  
采用RMT-150B岩石力学电液刚性伺服控制试验系统对石灰岩标准试件进行4级不同加载速率的单轴压缩变形室内试验,定量的分析了加载速率对石灰岩试件单轴抗压强度、峰值强度以及对应的应变、破坏后的性态、破裂形式及应力–应变关系等物理力学性态的影响。得出该石灰岩试件单轴压缩破坏的全过程曲线及一些重要特性和参数,为该矿山开采设计提供重要依据。  相似文献   

15.
簇平行黏结模型中微观参数对宏观参数影响的量纲研究   总被引:1,自引:0,他引:1  
 首先分别采用传统加载程序和新加载程序,对利用簇平行黏结模型所建立的颗粒流试样的力学特性进行研究。同时采用新加载程序,分析加载速率和冻结期时步对颗粒流试样力学特性的影响。随后利用量纲分析法研究簇平行黏结模型中微观参数对宏观参数的影响,建立岩石材料宏观参数(弹性模量、泊松比、单轴抗压强度和单轴抗拉强度)与簇平行黏结模型中微观参数间的半定量关系。相关模拟结果表明:(1) 利用传统加载程序计算得出的岩石应力–应变曲线是不准确的,它高估了单轴抗压强度、单轴抗拉强度和弹性模量,且不能真实再现岩石峰后脆性特征;2种加载程序得出的岩石破坏形态差异很大。(2) 结合新加载程序,簇平行黏结模型能得到合理的单轴抗压强度和单轴抗拉强度比值(UCS/TS)。在准静态范围内,加载速率与强度值没有相关性,这与试验结果吻合,加载速率对岩石应力–应变曲线的影响主要在峰后阶段。(3) 弹性模量主要与颗粒接触模量和颗粒接触刚度比相关,而泊松比主要与接触刚度比相关。为得到相同的泊松比值,簇平行黏结模型中的接触刚度比应大于平行黏结模型中的接触刚度比。单轴抗压强度和单轴抗拉强度主要受平行黏结强度比控制,另外单轴抗压强度受簇中颗粒数影响较大。  相似文献   

16.
The strength of hard-rock pillars   总被引:3,自引:0,他引:3  
Observations of pillar failures in Canadian hard-rock mines indicate that the dominant mode of failure is progressive slabbing and spalling. Empirical formulas developed for the stability of hard-rock pillars suggest that the pillar strength is directly related to the pillar width-to-height ratio and that failure is seldom observed in pillars where the width-to-height ratio is greater than 2. Two-dimensional finite element analyses using conventional Hoek–Brown parameters for typical hard-rock pillars (Geological Strength Index of 40, 60 and 80) predicted rib-pillar failure envelopes that did not agree with the empirical pillar-failure envelopes. It is suggested that the conventional Hoek–Brown failure envelopes over predict the strength of hard-rock pillars because the failure process is fundamentally controlled by a cohesion-loss process in which the frictional strength component is not mobilized. Two-dimensional elastic analyses were carried out using the Hoek-Brown brittle parameters which only relies on the cohesive strength of the rock mass. The predicted pillar strength curves were generally found to be in agreement with the observed empirical failure envelopes.  相似文献   

17.
A study was conducted to evaluate the effect of heavy blasting in open-pit coal mines on the stability of adjoining underground coal mine workings. Investigations were carried out at seven coal mines in India. Strata monitoring instruments, viz. borehole extensometers, convergence indicators, strain bars, stress capsules and load cells were installed in the roof and pillar. Monitoring of strata behaviour was carried out before and after the blasts. Arrangements were made to mount the transducers of seismographs in the roof and pillars to monitor vibration. Altogether, 202 production blasts were conducted and 622 vibration data were recorded.

The maximum peak particle velocity (PPV) recorded was 372.8 mm/s with the associated frequency of 78 Hz. At this magnitude of vibration, a coal block of 0.38 m3 detached from the roof. Minor damage in the form of loosened coal chips falling from the roof and the pillars was noticed at PPV level of 113 mm/s. Major damage was observed when the magnitude of PPV exceeded 181.9 mm/s. The damage is classified into three groups, viz. major damage, minor damage and no damage. The vibration levels in no damage zone are taken as safe level of vibration, The threshold value of vibration for the safety of underground workings is recommended based on the RMR of the roof rock.

It was also observed that the roof of underground roadways vibrated with 1.1–2.58 times higher amplitude of vibration compared to the pillars, The amplification was further higher at junctions. Monitoring of underground strata behaviour indicated, in all the mines, some amount of divergence between the roof and floor just after the blast, but, later on it was followed by convergence and most of the divergence that occurred was restored.  相似文献   


18.
Pillar stability is one of important aspects for underground mines.Generally,the stability of the pillars is evaluated empirically based on case studies and site-specific rock mass conditions in mines.Nevertheless the empirical approach applicability can sometimes be constrained.The numerical-based approaches are potentially more useful as parametric studies can be undertaken and,if calibrated,can be more representative.Both empirical and numerical approaches are dependent on the strength evaluation of the pillars while the strain developing in the pillars is seldom taken into consideration.In this paper,gypsum and sandstone samples were tested in laboratory with different width-to-height ratios(W/H)to adapt the strain evaluation method to the laboratory-based pillars.A correlation was then developed between the strain and the width-to-height ratio for pillar monitoring purposes.Based on the results,a flowchart was created to conduct back analysis for the existing pillars to evaluate their stability and design new pillars,considering the strain analysis of the existing pillars with the W/H ratios modelled.  相似文献   

19.
深部矿区煤岩体强度测试与分析   总被引:7,自引:3,他引:4  
 基于钻孔触探法原理,开发出小孔径井下煤岩体强度测定装置。在实验室对34个煤岩样品进行试验:在煤岩块上钻取标准试件,测量单轴抗压强度;在留下的钻孔中,用煤岩体强度测定装置测定探针临界载荷,分析探针破坏钻孔壁煤岩的形态;然后确定煤岩块单轴抗压强度与探针临界载荷的关系。试验表明,探针破坏钻孔壁煤岩的形状、深度及范围与煤岩性质密切相关。煤岩体强度越高,破坏范围、侵入深度越小,破坏形状越规则。结合井下实测数据,回归得出描述探针临界载荷与煤岩体单轴抗压强度关系的公式。同时,分析临界载荷的离散性及控制措施,讨论结构面对煤岩体强度的影响及测试分析方法,并在典型的深部矿区——新汶矿区进行井下原位测试。新汶矿区巷道顶板不同岩性的岩层强度相差很大,不同矿井的岩层强度也存在明显差别。煤层强度由于煤帮出现破碎区、煤层性质不均匀、煤层结构面分布不均匀等原因变化较大,出现明显的波动。基于井下煤岩体强度实测数据的巷道支护设计,符合井下环境中的煤岩体条件,设计的合理性与可靠性显著提高,巷道围岩稳定性与支护状况得到明显改善。最后分析钻孔触探法存在的问题,并提出改进建议。  相似文献   

20.
The stability analysis of an abandoned underground gypsum mine requires the determination of the mine pillar's strength.This is especially important for flooded abandoned mines where the gypsum pillars become saturated and are subjected to dissolution after flooding.Further,mine pillars are subjected to blast vibrations that generate some level of macro-and micro-fracturing.Testing samples of gypsum must,therefore,simulate these conditions as close as possible.In this research,the strength of gypsum is investigated in an as-received saturated condition using uniaxial compressive strength(UCS),Brazilian tensile strength(BTS)and point load index(PLI)tests.The scale effect was investigated and new correlations were derived to describe the effect of sample size on both UCS and BTS under dry and saturated conditions.Effects of blasting on these parameters were observed and the importance of choosing the proper samples was discussed.Finally,correlations were derived for both compressive and tensile strengths under dry and saturated conditions from the PLI test results,which are commonly used as a simple substitute for the indirect determination of UCS and BTS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号