首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
An experimental investigation on the influence of different hydrogen fractions and EGR rates on the performance and emissions of a spark-ignition engine was conducted. The results show that large EGR introduction decreases the engine power output. However, hydrogen addition can increase the power output at large EGR operation. Effective thermal efficiency shows an increasing trend at small EGR rate and a decreasing trend with further increase of EGR rate. In the case of small EGR rate, effective thermal efficiency is decreased with the increase of hydrogen fraction; while in the case of large EGR rate, thermal efficiency is increased with increasing of hydrogen fraction. For a specified hydrogen fraction, NOx concentration is decreased with the increase of EGR rate and this effectiveness becomes more obviously at high hydrogen fraction. HC emission is increased with the increase of EGR rate and it decreases with the increase of hydrogen fraction. CO and CO2 emissions show little variations with EGR rate, but they decrease with the increase of hydrogen fraction. The study shows that natural gas–hydrogen blend combining with EGR can realize high-efficiency and low-emission spark-ignition engine.  相似文献   

2.
Disposal of waste tires is one of the most important problems that should be solved. This problem can be solved by considering waste tires for production of hydrogen or fuel for diesel engines. This paper presents the studies on the performance and emission characteristics of a four stroke, four cylinders, naturally aspirated, direct-injected diesel engine running with various blends of waste tire pyrolysis oil (WTPO) with diesel fuel. Fuel properties, engine performance, and exhaust emissions of WTPO and its blends were analyzed and compared with those of petroleum diesel fuel. The experimental results showed that WTPO–diesel blends indicated similar performance with diesel fuel in terms of torque and power output of the test engine. It was found that the blends of pyrolysis oil of waste tire WTPO10 can efficiently be used in diesel engines without any engine modifications.  相似文献   

3.
This study reports the effects of engine load and biodiesel percentage on the performance of a diesel engine fueled with diesel–biodiesel blends by experiments and a new theoretical model based on the finite-time thermodynamics (FTT). In recent years, biodiesel utilization in diesel engines has been popular due to depletion of petroleum-based diesel fuel. In this study, performance of a single cylinder, four-stroke, direct injection (DI) diesel engine fueled with diesel–biodiesel mixtures has been experimentally and theoretically investigated. The simulation results agree with the experimental data. After model validation, the effects of engine load and biodiesel percentage on engine performance have been parametrically investigated. The results showed that, effective power increases constantly, effective efficiency increases to a specified value and then starts to decrease with increasing engine load at constant biodiesel percentage and compression ratio. However, effective efficiency increases, effective power decreases to a certain value and then begins to increase with increasing biodiesel percentage at constant equivalence ratio and compression ratio.  相似文献   

4.
Alcohols have been used as a fuel for engines since 19th century. Among the various alcohols, ethanol is known as the most suited renewable, bio-based and ecofriendly fuel for spark-ignition (SI) engines. The most attractive properties of ethanol as an SI engine fuel are that it can be produced from renewable energy sources such as sugar, cane, cassava, many types of waste biomass materials, corn and barley. In addition, ethanol has higher evaporation heat, octane number and flammability temperature therefore it has positive influence on engine performance and reduces exhaust emissions. In this study, the effects of unleaded gasoline (E0) and unleaded gasoline–ethanol blends (E50 and E85) on engine performance and pollutant emissions were investigated experimentally in a single cylinder four-stroke spark-ignition engine at two compression ratios (10:1 and 11:1). The engine speed was changed from 1500 to 5000 rpm at wide open throttle (WOT). The results of the engine test showed that ethanol addition to unleaded gasoline increase the engine torque, power and fuel consumption and reduce carbon monoxide (CO), nitrogen oxides (NOx) and hydrocarbon (HC) emissions. It was also found that ethanol–gasoline blends allow increasing compression ratio (CR) without knock occurrence.  相似文献   

5.
In this work, the combustion and emission characteristics were studied in a 186FA diesel engine fuelled with biodiesel–diesel to examine the effect of the percentage of biodiesel in the blends, and the experimental investigation was conducted with various blending ratios of biodiesel under different operating conditions. In addition, the combustion noise of the diesel engine fuelled with biodiesel–diesel was analysed, and then the emission characteristics of NOx and soot were studied through simulation analysis where the formation rate and distribution of NOx and soot for pure diesel and B20 fuel were described. Based on the simulation data of the original diesel engine fuelled with B20 fuel, the swirl ratio and fuel injection timing were optimised and the technical measures were suggested to reduce the two different emissions simultaneously. The simulation results showed the emission characteristics were optimal when the swirl ratio was 2.7 and fuel injection timing was 7.5° degree of crank angle before top dead centre respectively.  相似文献   

6.
Environmental concerns and limited resource of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (IC) engines. For diesel engines, alcohols are receiving increasing attention because they are oxygenated and renewable fuels. Therefore, in this study, the effect of injection timing on the exhaust emissions of a single cylinder, naturally aspirated, four-stroke, direct injection diesel engine has been experimentally investigated by using methanol-blended diesel fuel from 0% to 15% with an increment of 5%. The tests were conducted for three different injection timings (15°, 20° and 25 °CA BTDC) at four different engine loads (5 Nm, 10 Nm, 15 Nm, 20 Nm) at 2200 rpm. The experimental test results showed that Bsfc, NOx and CO2 emissions increased as BTE, smoke opacity, CO and UHC emissions decreased with increasing amount of methanol in the fuel mixture. When compared the results to those of original injection timing, NOx and CO2 emissions decreased, smoke opacity, UHC and CO emissions increased for the retarded injection timing (15 °CA BTDC). On the other hand, with the advanced injection timing (25 °CA BTDC), decreasing smoke opacity, UHC and CO emissions diminished, and NOx and CO2 emissions boosted at all test conditions. In terms of Bsfc and BTE, retarded and advanced injection timings gave negative results for all fuel blends in all engine loads.  相似文献   

7.
This paper presents the results obtained of a compression ignition engine (modified to run on spark ignition mode) fuelled with hydrogen–ethanol dual fuel combination with different percentage substitutions of hydrogen (0–80% by volume with an increment of 20%) under variable compression ratio conditions (i.e. 7:1, 9:1 and 11:1) by varying the spark ignition timing at a constant speed of 1500 rpm. The various engine performance parameters studied were brake specific fuel consumption, brake mean effective pressure and brake thermal efficiency. It was found from the present study that for specific ignition timing the brake mean effective pressure and the brake thermal efficiency increases with the increase of hydrogen fraction in ethanol and all hydrogen substitutions showed the maximum increase in brake thermal efficiency and reduction in brake specific fuel consumption value at around 25° CA advanced ignition timing. The best operating conditions were obtained at a compression ratio of 11:1 and the optimum fuel combination was found to be 60–80% hydrogen substitution to ethanol.  相似文献   

8.
In this research, the effects of unleaded iso-octane (base fuel), iso-octane–ethanol blend (E20) and iso-octane–methanol blend (M20) on engine performance were investigated experimentally in a single-cylinder four-stroke spark-ignition engine. The tests were performed by varying the throttle position and engine speed at a constant load of 8 kg. The engine speed was varied from 1200 to 1750 rpm, with changing the throttle position. The results showed that ethanol and methanol addition to unleaded iso-octane increases the engine torque, power and brake-specific fuel consumption (BSFC) in comparison to base fuel. The results also showed that exhaust temperature increases with the increase in engine speed. The thermal efficiency varies from 14.3% to 35.9% for iso-octane, 20.1–30.59% for E20 and (17.64–27.46%) for M20 fuel. It was also found that the volumetric efficiency of M20 and E20 fuels was higher than that of iso-octane in all speed ranges.  相似文献   

9.
We investigated the generating efficiency and pollutant emissions of a four-stroke spark-ignition gas engine generator operating on biogas–hydrogen blends of varying excess air ratios and hydrogen concentrations. Experiments were carried out at a constant engine speed of 1200 rpm and a constant electric power output of 10 kW. The experimental results showed that the peak values of generating efficiency, maximum cylinder pressure, and NOx emissions were elevated at an excess air ratio of around 1.2 as the hydrogen concentration was increased. CO2 emissions decreased as the excess air ratio and hydrogen concentration increased, due to lean-burn conditions and hydrogen combustion. An efficiency per NOx emissions ratio (EPN) was defined to consider the relationship between the generating efficiency and NOx emissions. A maximum EPN value of 0.7502 was obtained with a hydrogen concentration of 15%, for an excess air ratio of 2.0. At this EPN value, the NOx and CO2 emissions were 39 ppm and 1678.32 g/kWh, respectively, and the generating efficiency was 29.26%. These results demonstrated that the addition of hydrogen to biogas enabled the effective generation of electricity using a gas engine generator through lean-burn combustion.  相似文献   

10.
In this study, an experimental study on the performance and exhaust emissions of a spark-ignition engine fuelled with methane–hydrogen mixtures (100% CH4, 10% H2 + 90% CH4, 20% H2 + 80% CH4, and 30% H2 + 70% CH4) were performed at different engine speeds and different excessive air ratios. This present work was carried out on a Ford engine. This is a four-stroke cycle four-cylinder spark-ignition engine with a bore of 80.6 mm, a stroke of 88 mm and a compression ratio of 10:1. Experiments were performed at 1500, 2000, 2500 and 3000 rpm and at wide open throttle (WOT). CO, CO2 and HC emission values and cylinder pressure were measured. The results showed that while the speed and excessive air ratio increase, CO emission values decrease. The reduction of HC and CO emissions could be obtained by adding hydrogen into the natural gas when operating on the lean mixture condition. Increasing the excessive air ratio also decreases the maximum peak cylinder pressure.  相似文献   

11.
Feasibility of using high percentage of ethanol in diesel–ethanol blends, with biodiesel as a co-solvent and properties enhancer has been investigated. The blends tested are D70/E20/B10 (blend A), D50/E30/B20 (blend B) D50/E40/B10 (blend C), and Diesel (D100). The blends are prepared to get maximum percentage of oxygen content but keeping important properties such as density, viscosity and Cetane index within acceptable limits. Experiments are conducted on a multicylinder, DI diesel engine, whose original injection timing was 13° CA BTDC. The engine did not run on blends B and C at this injection timing and it was required to advance timing to 18° and 21° CA BTDC to enable the use of blends B and C respectively. However advancing injection timing almost doubled the NO emissions and increased peak firing pressure. The Pθ and net heat release diagrams shows that the combustion process of these blends delayed at low loads but approaches to the diesel fuel at high loads. The comparison of blend results with baseline diesel showed that brake specific fuel consumption increased considerably, thermal efficiency improved slightly, smoke opacity reduced remarkably at high loads. NO variation depends on operating conditions while CO emissions drastically increased at low loads. Blend B which replaced 50% diesel and having oxygen content up to 12.21% by weight has given satisfactory performance for steady state running mode up to 1600 RPM however, it does not showed any benefit on peak smoke emission during free acceleration test.  相似文献   

12.
There are two main reasons of alternative fuel search of scientists: environmental problems resulted from combustion of fossil fuels and limited reserves of crude oil. Biodiesel and Hydrogen (H2) are two of the most promising alternative fuels with their environmental friendly combustion profiles. The aim of this study was to evaluate vibration level of a hydroxyl (HHO) gas generator installed and diesel engine using different kinds of biodiesel fuels. In this study, at different flow rates, the effect of HHO gas addition on engine vibration performance was investigated with a Mitsubishi Canter 4D34-2A diesel engine. HHO gas introduced to the test engine via its intake manifold with 2, 4 and 6 L per minute (LPM) flow rates when the engine was fuelled with sunflower, canola, and corn biodiesels. The vibration data was collected between 1200 and 2400 rpm engine speeds by 300 rpm intervals. Finally, artificial neural network (ANN) approach was conducted in order to predict the effect of fuel properties and HHO amount on engine vibration level.  相似文献   

13.
The aim of this study is to investigate the suitability of isobutanol–diesel fuel blends as an alternative fuel for the diesel engine, and experimentally determine their effects on the engine performance and exhaust emissions, namely break power, break specific fuel consumption (BSFC), break thermal efficiency (BTE) and emissions of CO, HC and NOx. For this purpose, four different isobutanol–diesel fuel blends containing 5, 10, 15 and 20% isobutanol were prepared in volume basis and tested in a naturally aspirated four stroke direct injection diesel engine at full -load conditions at the speeds between 1200 and 2800 rpm with intervals of 200 rpm. The results obtained with the blends were compared to those with the diesel fuel as baseline. The test results indicate that the break power slightly decreases with the blends containing up to 10% isobutanol, whereas it significantly decreases with the blends containing 15 and 20% isobutanol. There is an increase in the BSFC in proportional to the isobutanol content in the blends. Although diesel fuel yields the highest BTE, the blend containing 10% isobutanol results in a slight improvement in BTE at high engine speeds. The results also reveal that, compared to diesel fuel, CO and NOx emissions decrease with the use of the blends, while HC emissions increase considerably.  相似文献   

14.
A single-cylinder diesel engine has been converted into a dual-fuel engine to operate with natural gas together with a pilot injection of diesel fuel used to ignite the CNG–air charge. The CNG was injected into the intake manifold via a gas injector on purpose designed for this application. The main performance of the gas injector, such as flow coefficient, instantaneous mass flow rate, delay time between electrical signal and opening of the injector, have been characterized by testing the injector in a constant-volume optical vessel. The CNG jet structure has also been characterized by means of shadowgraphy technique.  相似文献   

15.
Lean combustion is an effective way for improving the spark-ignited (SI) engine performance. Unfortunately, due to the narrow flammability of gasoline, the pure gasoline-fueled engines sometimes suffer partial burning or misfire at very lean conditions. Hydrogen has many excellent combustion properties that can be used to extend the gasoline engine lean burn limit and improve the gasoline engine performance at lean conditions. In this paper, a 1.6 L port fuel injection gasoline engine was modified to be a hybrid hydrogen–gasoline engine (HHGE) fueled with the hydrogen–gasoline mixture by mounting an electronically controlled hydrogen injection system on the intake manifolds while keeping the original gasoline injection system unchanged. A self-developed hybrid electronic control unit (HECU) was used to flexibly adjust injection timings and durations of gasoline and hydrogen. Engine tests were conducted at 1400 rpm and a manifolds absolute pressure (MAP) of 61.5 kPa to investigate the performance of an HHGE at lean burn limits. Three hydrogen volume fractions in the total intake gas of 1%, 3% and 4.5% were adopted. For a specified hydrogen volume fraction, the gasoline flow rate was gradually reduced until the engine reached the lean burn limit at which the coefficient of variation in indicated mean effective pressure (COVimep) was 10%. The test results showed that COVimep at the same excess air ratio was obviously reduced with the increase of hydrogen enrichment level. The excess air ratio at the lean burn limit was extended from 1.45 of the original engine to 2.55 of the 4.5% HHGE. The engine brake thermal efficiency, CO, HC and NOx emissions at lean burn limits were also improved for the HHGE.  相似文献   

16.
An experimental investigation was conducted to evaluate the effects of using methanol as additive to biodiesel–diesel blends on the engine performance, emissions and combustion characteristics of a direct injection diesel engine under variable operating conditions. BD50 (50% biodiesel and 50% diesel in vol.) was prepared as the baseline fuel. Methanol was added to BD50 as an additive by volume percent of 5% and 10% (denoted as BDM5 and BDM10). The results indicate that the combustion starts later for BDM5 and BDM10 than for BD50 at low engine load, but is almost identical at high engine load. At low engine load of 1500 r/min, BDM5 and BDM10 show the similar peak cylinder pressure and peak of pressure rise rate to BD50, and higher peak of heat release rate than that of BD50. At low engine load of 1800 r/min, the peak cylinder pressure and the peak of pressure rise rate of BDM5 and BDM10 are lower than those of BD50, and the peak of heat release rate is similar to that of BD50. The crank angles at which the peak values occur are later for BDM5 and BDM10 than for BD50. At high engine load, the peak cylinder pressure, the peak of pressure rise rate and peak of heat release rate of BDM5 and BDM10 are higher than those of BD50, and the crank angle of peak values for all tested fuels are almost same. The power and torque outputs of BDM5 and BDM10 are slightly lower than those of BD50. BDM5 and BDM10 show dramatic reduction of smoke emissions. CO emissions are slightly lower, and NOx and HC emissions are almost similar to those of BD50 at speed characteristic of full engine load.  相似文献   

17.
In this paper, the performance and emission characteristics of a conventional twin-cylinder, four stroke, spark-ignited (SI) engine that is running with methane–hydrogen blends have been investigated experimentally. The engine was modified to realize hydrogen port injection by installing hydrogen feeding line in the intake manifolds. The experimental results have been demonstrated that the brake specific fuel consumption (BSFC) increased with the increase of hydrogen fraction in fuel blends at low speeds. On the other hand, as hydrogen percentage in the mixture increased, BSFC values decreased at high speeds. Furthermore, brake thermal efficiencies were found to decrease with the increase in percentage of hydrogen added. In addition, it has been found that CO2, NOx and HC emissions decrease with increasing hydrogen. However, CO emissions tended to increase with the addition of hydrogen generally increase. It has been showed that hydrogen is a very good choice as a gasoline engine fuel. The data are also very useful for operational changes needed to optimize the hydrogen fuelled SI engine design.  相似文献   

18.
In this study, effects on a spark ignition engine of mixtures of hydrogen and methane have been experimentally considered. This article presents the results of a four-cylinder engine test with mixtures of hydrogen in methane of 0, 10, 20 and 30% by volume. Experiments have been made varying the equivalence ratio. Equivalence ratios have been selected from 0.6 to 1.2. Each fuel has been investigated at 2000 rpm and constant load conditions. The result shows that NO emissions increase, HC, CO and CO2CO2 emission values decrease and brake thermal efficiency (BTE) values increase with increasing hydrogen percentage.  相似文献   

19.
The present study focuses on the investigation of environmental effects of adding aluminum oxide (Al2O3) nanoparticles as nano-additive in diesel-pyrolyzed biomass oil (PBO) blends. The PBO was extracted from jatropha seeds through the catalytic pyrolysis process at a temperature ranging from 450°C to 550°C. The esterification of PBO has been carried out using a catalyst in the presence of methyl alcohol to improve its physical properties and quality. The Al2O3 nano-additives were dispersed into PBO20 (20% of PBO and 80% of diesel) and PBO40 (40% of PBO and 60% of diesel) blends with a concentration of 50 ppm. The physical properties of test fuel blends were measured and compared with diesel. The engine emission tests were carried out using these blends at a constant speed of 1500 rpm by varying the load. The emission constituents such as CO, HC, and smoke were reduced. However, the emissions like CO2 and NO were increased by the addition of nano-additives compared to diesel.  相似文献   

20.
An experimental study on the effect of hydrogen fraction and EGR rate on the combustion characteristics of a spark-ignition engine fueled with natural gas–hydrogen blends was investigated. The results show that flame development duration, rapid combustion duration and total combustion duration are increased with the increase of EGR rate and decreased with the increase of hydrogen fraction in the blends. Hydrogen addition shows larger influence on flame development duration than that on rapid combustion duration. The coefficient of variation of the indicated mean effective pressure increases with the increase of EGR rate. And hydrogen addition into natural gas decreases the coefficient of variation of the indicated mean effective pressure, and this effectiveness becomes more obviously at high EGR rate. Engine fueled with natural gas–hydrogen blends combining with proper EGR rate can realize the stable low temperature combustion in gas engine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号