首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, an experimental study on the heat transfer characteristics of two-phase flow condensation and boiling of ternary non-azeotropic refrigerant mixtures, on water/refrigerant horizontal enhanced surface tubing, is presented. The enhanced surface tubing data showed a significant enhancement of the heat transfer compared to an equivalent smooth tube depending on the mixture components and their concentrations. Correlations were proposed to predict the heat transfer characteristics such as average heat transfer coefficients, as well as pressure drops of ternary non-azeotropic refrigerant mixture flow condensation, and boiling inside enhanced surface tubing. In addition, it was found that the refrigerant mixture's pressure drop is a weak function of the mixture's composition.  相似文献   

2.
In this paper, the results of the heat transfer, forced convection, boiling characteristics of non-azeotropic refrigerant mixtures and oil are presented. This includes heat transfer coefficients for pure and binary mixtures under boiling conditions outside enhanced surface tubing. Local convective heat transfer coefficients have been determined using a modified Wilson-plot technique. Heat transfer correlations were established as a function of the binary mixture mass flow rate, and oil concentration, as well as key flow parameters.  相似文献   

3.
对水平横管束降膜吸收器中,溴化锂溶液表面自然对流和强迫对流传质现象,分别在常压和负压下进行了实验研究。以惠特曼提出的双膜模型为基础,对实验结果做出了分析;以图线的方式,直观的比较了传质系数与压力,溶液表面对流情况的关系。得出了强迫对流对传质系数有很大提升的结论。  相似文献   

4.
Experimental studies of crossflow boiling on a horizontal tube at various in Mass fluxes, local flow qualities and geometric arrangements are investigated. Since abundant information is available for the boiling on a single tube in a pool but it is still not clear whether this information in ay be applicable to tubes in bundles, the present study is therefore performed on three different conditions, namely: (1) a heated tube in a channel; (2) a heated tube in a non-heated, in-line tube bundle; and (3) a heated tube in a heated, in-line tube bundle. The different heat transfer results between a single tube in a channel and a tube in a non-heated bundle, and between a non-heated bundle and a heated bundle are discussed in terms of the different flow field geometry and thermal environment respectively due to the presence of different structures and the heating conditions near the tube. A modified Chen's correlation is established to predict the heat transfer of a single tube in a channel or in a bundle. The correlation is also in good agreement with other data in the literature.  相似文献   

5.
In this paper an experimental study of convective boiling heat transfer of R-600a/oil/nanoparticle mixtures is investigated. The experimental setup was prepared with a smooth horizontal tube as a test section with the length and diameter of 9.5 and 103 mm, respectively, and pure R-600a was applied for evaluating the heat transfer enhancement. Six mixtures containing 1% weight fraction of R-600a/oil with different concentrations of CuO nanoparticles including 0.0, 0.5, 1.0, 1.5, 2.0 and 5.0% weight fraction of R-600a/oil/nanoparticle were used in our study.The mass velocity per cross area was considered at the range of 50–700 kg/m2 s for low vapor quality (ϕ < 0.25). The results showed that the convective boiling heat transfer coefficient will be increased by increasing the mass fraction of nanoparticles up to 2%, while by increasing the mass fraction of nanoparticles up to 5% the heat transfer coefficient will be reduced.  相似文献   

6.
ExperimentalInvestigationofForcedConvectiveBoilingFlowInstabilitiesinHorizontalHelicallyCoiledTubesL.J.Guo;Z.P.Feng;X.J.Chen(...  相似文献   

7.
HFO1234yf has been proposed for mobile air-conditioners due to its low global warming potential (GWP) and performance comparable to that of R134a. However, its performance is inferior to that of R410A. This makes it difficult to be applied to residential air-conditioners. In order to apply the low-GWP refrigerant to residential air-conditioners, refrigerant mixtures of HFO1234yf and R32 are proposed, and their flow boiling heat transfer performances were investigated at two mass fractions (80/20 and 50/50 by mass%) in a smooth horizontal tube with an inner diameter of 2 mm. The experiments were conducted under heat fluxes ranging from 6 to 24 kW/m2 and mass fluxes ranging from 100 to 400 kg/m2 s at the evaporation temperature of 15 °C. The measured heat transfer coefficients were compared with those of pure HFO1234yf and R32. The results showed that the heat transfer coefficients of the mixture with an R32 mass fraction of 20% were 10–30% less than those of pure HFO1234yf for various mass and heat fluxes. When the mass fraction of R32 increased to 50%, the heat transfer coefficients of the mixture were 10–20% greater than those of pure HFO1234yf under conditions of large mass and heat fluxes. Moreover, the heat transfer coefficients of the mixtures were about 20–50% less than that of pure R32. The performances of the mixtures were examined at different boiling numbers. For refrigerant mixture HFO1234yf and R32 (80/20 by mass%), the nucleate boiling heat transfer was noticeably suppressed at low vapor quality for small boiling numbers, whereas the forced convective heat transfer was significantly suppressed at high vapor quality for large boiling numbers. This indicates that the heat transfer is greatly influenced by the mass diffusion resistance and temperature glide of the mixture.  相似文献   

8.
An experimental study on the characteristics of two phase flow boiling of pure refrigerants such as R12 and R22 as well as nonazeotropic refrigerant mixtures R22/R114 and R22/R152a inside horizontal enhanced surface tubing is presented. The enhanced surface tubing results showed a significant improvement of the heat transfer over that of an equivalent smooth tube, depending on the mixture components and their concentrations. Correlations are proposed to predict the heat transfer characteristics such as average heat transfer coefficients as well as pressure drops of nonazeotropic refrigerant mixture flow boiling inside enhanced surface tubing. In addition, it was found that the refrigerant mixtures pressure drop is a weak function of the mixture compositions.  相似文献   

9.
《Applied Thermal Engineering》2002,22(14):1535-1548
In this paper, an analytical study on the influence of thermophysical properties on heat transfer characteristics of two-phase flow boiling of some refrigerant mixtures in air/refrigerant horizontal enhanced surface tubing is presented.Correlations were proposed to predict the thermophysical properties of refrigerant mixtures such as thermal conductivity and viscosity as well as their impact on the heat transfer characteristics such as average heat transfer coefficients, and pressure drops of R-507, R-404A, R-410A, and R-407C in two-phase flow boiling inside enhanced surface tubing. In addition, it was found that the refrigerant mixture's pressure drop is a weak function of the mixture's composition.It was also evident that the proposed improved correlations for predicting the thermophysical properties were applicable to the entire heat and mass flux, investigated in the present study. The deviation between the experimental and predicted value using new and improved correlations for the heat transfer coefficient and pressure drop were <±20 %, for the majority of data.  相似文献   

10.
In this paper, an experimental study on the heat transfer characteristics of two-phase flow boiling of alternative azeotropic refrigerant mixtures to R-502 on air/refrigerant horizontal enhanced surface tubing is presented. Correlations were proposed to predict the heat transfer characteristics such as average heat transfer coefficients, as well as pressure drops of alternatives to R-502; such as R-507, R-404A, R-407B, and R-408A in two-phase flow boiling inside enhanced surface tubing. In addition, it was found that the refrigerant mixture’s pressure drop is a weak function of the mixture’s composition. It was found that the correlations were applicable to the entire heat and mass flux, investigated in the present study for the proposed blends under question. The deviation between the experimental and predicted values for the heat transfer coefficient and pressure drop were less than ±20% and 35%, respectively, for the majority of data.  相似文献   

11.
Heat transfer coefficients during condensation of the zeotropic refrigerant mixture R-22 with R-142b are presented. Measurements were obtained at different mass fractions in a smooth horizontal tube. All measurements were conducted at a high condensing saturation pressure of 2.43 MPa, which corresponds to a condensation temperature of 60 °C for R-22. The measurements were taken in 8.11 mm inner diameter smooth tubes with lengths of 1 603 mm. The heat transfer coefficients were determined with the Log Mean Temperature Difference equations. It was found that at low mass fluxes, between 40 kg·m−2·s−1 to 350 kg·m−2·s−1, the refrigerant mass fraction influences the heat transfer coefficient by up to a factor of two. The heat transfer coefficients decrease as the fraction of R-142b is increased. At high mass fluxes, of 350 kg·m−2·s−1 and more the heat transfer coefficients were not strongly influenced by the refrigerant mass fraction. The average heat transfer coefficient decreased by only 7% as the refrigerant mass fraction changed from 100% R-22 to 50%/50% R-22/R142b.  相似文献   

12.
IntroductionConvechve boiling or highly subcooled single-Phaseforced convention in micro-channels is an effeCtivecooling meChedsm with a wide ~ge of aPPlications.Among these are the COOling of such diverse system as. accelerator abets, high power resistive magnets,compact fission ~ cores, fusion ~ blankets,advanced space thermal management systems,manufachang and materials Processing OPerations, andhigh-density multi~chip modules in supe~ andOther modular eleCtronics. These devices involv…  相似文献   

13.
An experimental study on the saturated flow boiling heat transfer for a binary mixture of R290/R152a at various compositions is conducted at pressures ranging from 0.2 to 0.4 MPa. The heat transfer coefficients are experimentally measured over mass fluxes ranging from 74.1 to 146.5 kg/(m2·s) and heat fluxes ranging from 13.1 to 65.5 kW/m2. The influences of different parameters such as quality, saturation pressure, heat flux, and mass flux on the local heat transfer coefficient are discussed. Existing correlations are analyzed. The Gungor-Winterton correlation shows the best fit among experimental data for the two pure refrigerants. A modified correlation for the binary mixture is proposed based on the authors’ previous work on pool boiling heat transfer and the database obtained from this study. The result shows that the total mean deviation is 10.41% for R290/R152a mixtures, with 97.6% of the predictions falling within ±30%.  相似文献   

14.
An analytical study on the influence of gas/liquid injection on heat transfer characteristics of two‐phase flow boiling of some refrigerant mixtures in horizontal enhanced surface tubing is presented. Correlations were proposed to predict the impact of the gas/liquid injection on the heat transfer characteristics such as average heat transfer coefficient of R‐507, R‐404A, R‐410A and R‐407C in two‐phase flow boiling inside enhanced surface tubing. The data also revealed that gas/liquid injection is beneficial at certain gas/liquid injection ratios to the heat transfer coefficient depending upon the Reynolds number and the boiling point. It was also evident that the proposed correlations and the experimental data that the gas/liquid injection has significant impact on the heat transfer coefficient. In addition, the proposed correlations were applicable to the entire heat and mass flux, investigated in the present study under gas/liquid injection conditions. The deviation between the experimental and predicted under gas/liquid injection were less than ±20, for the majority of data. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Experimental investigations were carried out on non-azeotropic refrigerant mixtures, named M1A (mass fraction of 20%R152a and 80%R245fa), M1B (mass fraction of 37% R152a and 63%R245fa) and M1C (mass fraction of 50%R152a and 50%R245fa), based on a water-to-water heat pump system in the condensing temperature range of 70–90 °C with a cycle temperature lift of 45 °C. Performance of R245fa was tested for comparison. Unfair factors in experimental comparative evaluation research with the same apparatus were identified and corrected. Experimental cycle performance of the mixtures were tested and compared with improved experimental assessment methodology. The results show that all of the mixtures deliver higher discharge temperature, higher heating capacity, higher COP and higher εh,c than R245fa. M1B presents the most excellent cycle performance and is recommended as working fluid for moderate/high temperature heat pump.  相似文献   

16.
An experiment is conducted here to investigate the saturated flow boiling heat transfer characteristics of ozone friendly refrigerant R-410A in a horizontal annular finned duct. Meanwhile the associated bubble characteristics in the duct are also inspected from the flow visualization. The experimental data are presented in terms of saturated flow boiling curves, boiling heat transfer coefficients and flow photos. In addition, empirical correlation equations for the saturated flow boiling heat transfer coefficient and mean bubble departure diameter are proposed. The saturated flow boiling curves show that boiling hysteresis is insignificant in the flow and the wall superheat needed for the onset of nucleate boiling is slightly affected by the refrigerant mass flux. Besides, the boiling curves are mainly affected by the imposed heat flux and refrigerant mass flux. Moreover, the measured saturated flow boiling heat transfer coefficient increases with the imposed heat flux and refrigerant mass flux. Furthermore, at a higher refrigerant mass flux the departing bubbles are smaller.  相似文献   

17.
In this paper, an analytical study on the influence of liquid injection on heat transfer characteristics of two‐phase flow boiling of some refrigerant mixtures in air/refrigerant horizontal enhanced surface tubing is presented. Correlations were proposed to predict the impact of the liquid injection the thermophysical properties of refrigerant mixtures as well as the heat transfer characteristics such as average heat transfer coefficient of R‐507, R‐404A, R‐410A, and R‐407C in two‐phase flow boiling inside enhanced surface tubing. It was also evident that the proposed correlations and the experimental data that the liquid injection has significant impact on the heat transfer coefficient. In addition, the proposed correlations were applicable to the entire heat and mass flux, investigated in the present study under the liquid injection conditions. The deviation between the experimental and predicted under liquid injection were less than ±20, for the majority of data. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
An experimental study on in-tube flow boiling heat transfer of R-134a/R-290/R-600a refrigerant mixture has been carried out under varied heat flux test conditions. The heat transfer coefficients are experimentally measured at temperatures between ?8 and 5 °C for mass flow rates of 3–5 g s?1. Acetone is used as a hot fluid which flows in the outer tube of diameter 28.57 mm while the refrigerant mixture flows in the inner tube of diameters 9.52 and 12.7 mm. By regulating the acetone flow conditions, the heat flux is maintained between 2 and 8 kW/m2 and the pressure of the refrigerant is maintained between 3.2 and 5 bar. The comparison of experimental results with the familiar correlations shows that the correlations over predict the heat transfer coefficients for this mixture when stratified and stratified-wavy flow prevail. Multiple regression technique is used to evolve and modify existing correlations to predict the heat transfer coefficient of the refrigerant mixture. It is found that the modified version of Lavin–Young correlation (1965) predicts the heat transfer coefficient of the considered mixture within an average deviation of ±20.5 %.  相似文献   

19.
ForcedConvectiveCondensationofNonazeotropicRefrigerantMixturesinHorizontalAnnuluswithPetalShapedFinTubesWangShiping;ZhouXinqi...  相似文献   

20.
In this paper, an experimental study on the influence of magnetohydrodynamic (MHD) on heat transfer characteristics of two‐phase flow boiling of some refrigerant mixtures in air/refrigerant horizontal enhanced surface tubing is presented. Correlations were proposed to predict the impact of MHD on the heat transfer characteristics such as average heat transfer coefficients, and pressure drops of R‐507, R‐404A, R‐410A, and R‐407C in two‐phase flow boiling inside enhanced surface tubing. In addition, it was found that the refrigerant mixture's pressure drop is a weak function of the mixture's composition. It was also evident that the proposed correlations for predicting the heat transfer characteristics were applicable to the entire heat and mass flux, investigated in the present study. The deviation between the experimental and predicted value using new and improved correlations for the heat transfer coefficient and pressure drop were less than ±20%, for the majority of data. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号