首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Acta Materialia》2001,49(14):2827-2841
The thickening kinetics of Ω plates in an Al–4Cu–0.3Mg–0.2Ag (wt. %) alloy have been measured at 200, 250 and 300°C using conventional transmission electron microscopy techniques. At all temperatures examined the thickening showed a linear dependence on time. At 200°C the plates remained less than 6 nm in thickness after 1000 h exposure. At temperatures above 200°C the thickening kinetics are greatly increased. Atomic resolution Z-contrast microscopy has been used to examine the structure and chemistry of the (001)Ω6(111)α interphase boundary in samples treated at each temperature. In all cases, two atomic layers of Ag and Mg segregation were found at the broad face of the plate. The risers of the thickening ledges and the ends of the plates were free of Ag segregation. The necessary redistribution of Ag and Mg accompanying a migrating thickening ledge occurs at all temperatures and is not considered to play a decisive role in the excellent coarsening resistance exhibited by the Ω plates at temperatures up to 200°C. Plates transformed at 200°C rarely contained ledges and usually exhibited a strong vacancy misfit normal to the plate. A large increase in ledge density was observed on plates transformed at 300°C, concomitant with accelerated plate thickening kinetics. The high resistance to plate coarsening exhibited by Ω plates at temperatures up to 200°C, is due to a prohibitively high barrier to ledge nucleation in the strong vacancy field normal to the broad face of the plate. Results also suggest that accommodation of the large misfit that exists normal to the broad face of the plate is unlikely to provide the driving force for Ag and Mg segregation.  相似文献   

2.
《Scripta materialia》2004,50(9):1227-1231
An underaged Al–Cu–Mg–Ag alloy shows zero secondary creep after 20,000 h at 130 °C and a stress of 200 MPa. Specimens exposed with and without an applied load reveal that dynamic precipitation of θ and S(S) occurs on dislocations during primary creep, whereas σ phase forms in the matrix of the unloaded specimen.  相似文献   

3.
The behavior of aluminum alloy AA2139 subjected to T6 treatment, including solution treatment and artificial aging, has been studied using cyclic loading with a constant total strain amplitude. Upon low-cyclic fatigue in the range of total strain amplitudes εac of 0.4–1.0%, the cyclic behavior of the AA2139-T6 alloy is determined by the processes that occur under the conditions of predominance of the elastic deformation over plastic deformation. The AA2139 alloy exhibits stability to cyclic loading without significant softening. The stress-strained state of the alloy upon cyclic loading can be described by the Hollomon equation with the cyclic strength coefficient K' and the cyclic strain-hardening exponent n' equal to 641 MPa and 0.066, respectively. The dependence of the number of cycles to fracture on the loading amplitude and its components (amplitudes of the plastic and elastic deformation) is described by a Basquin–Manson–Coffin equation with the parameters σ′/E = 0.014, b =–0.123, ε′f= 178.65, and c =–1.677.  相似文献   

4.
The metastable β′ phase is a key strengthening precipitate phase in a range of Mg–RE (RE: rare-earth elements) based alloys. The morphology of the β′ precipitates changes from a faceted and nearly equiaxed shape in Mg–Y alloys to a truncated lenticular shape in Mg–Gd alloys. In this work, we study effects of interfacial energy and coherency elastic strain energy on the morphology of β′ precipitates in binary Mg–Y and Mg–Gd alloys using a combination of first-principles calculations and phase-field simulations. Without any free-fitting parameters and using the first-principles calculations, CALPHAD databases and experimental characterizations as model inputs (lattice parameters of the β′ phase, elastic constants and chemical free energy of Mg matrix and interfacial energies of the coherent β′/Mg matrix interfaces), the phase-field simulations predict equilibrium shapes of β′ precipitates of different sizes that agree well with experimental observations. Factors causing the difference in the equilibrium shape of β′-Mg7Y and β′-Mg7Gd precipitates are identified, and possible approaches to increase the aspect ratio of the β′ precipitates and thus to enhance the strength of Mg–RE alloys are discussed.  相似文献   

5.
《Acta Materialia》2004,52(9):2541-2547
There are no previous phase equilibria studies of the Sn–Ag–Ni ternary system, even though the phase equilibria information is important for the electronic industry. The isothermal section of the Sn–Ag–Ni ternary system at 240 °C has been determined in this study both by experimental examination and thermodynamic calculation. Experimental results show no existence of ternary compounds in the Sn–Ag–Ni system, and all the constituent binary compounds have very limited solubilities of the ternary elements. The binary Ni3Sn2 phase is very stable and is in equilibrium with most of the phases, Ag3Sn, ζ-Ag4Sn, Ag, Ni3Sn4 and Ni3Sn phases. A preliminary thermodynamic model of the ternary system is developed based on the models of the three binary constituent systems without introducing any ternary interaction parameters. This ternary thermodynamic model is used with a commercial software Pandat to calculate the Sn–Ag–Ni 240 °C isothermal section. The phase relationships determined by calculation are consistent with those determined experimentally. Besides phase equilibria determination, the interfacial reactions between the Sn–Ag alloys with Ni substrate are investigated at 240, 300 and 400 °C, respectively. It is found that the phase formations in the Sn–3.5wt%Ag/Ni couples are very similar to those in the Sn/Ni couples.  相似文献   

6.
7.
The Mg–Li–N–H system is a very promising hydrogen storage material due to its high capacity, reversibility and moderate operating conditions. Some of thermodynamic and structural properties for this system are characterized here. Pressure-composition isotherms are measured and presented in this paper for absorption–desorption at 220, 200 and 180 °C. Powder X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) analysis were carried out for samples at various degrees of hydrogenation. These results provide information about the structural changes during absorption/desorption. The mixture of (2LiNH2 + MgH2) partially converts to (Mg(NH2)2 + 2LiH) when heated at 220 °C and 100 bar of hydrogen without undergoing desorption. Based on two distinct parts which appear in all of the pressure-composition isotherms (180–220 °C), two reactions taking place isothermally in hydrogen absorption/desorption are proposed for the material starting with (2LiNH2 + MgH2) or (Mg(NH2)2 + 2LiH). These reactions include a single solid-phase reaction, corresponding to the sloping region for hydrogen weight percent (Hwt%) smaller than 1.5%, and a multiple-phase reaction, corresponding to a plateau region for Hwt.% > 1.5 in the isotherms. During hydrogen absorption/desorption, the single-solid-phase reaction corresponds to the forming/consuming of NH2 which is bonded to Li and the multiple-solid-phase reaction corresponds to forming/consuming Mg(NH2)2 and LiH. A mechanism for the sorption reactions has been proposed.  相似文献   

8.
Mg–Zn–Ag alloys have been extensively studied in recent years for potential biodegradable implants due to their unique mechanical properties,biodegradability and biocompatibility.In the present study,Mg–3Zn-x Ag(wt%,x=0.2,0.5 and0.8)alloys with single-phase crystal structure were prepared by backward extrusion at 340°C.The addition of Ag element into Mg–3Zn slightly influences the ultimate tensile strength and microstructure,but the elongation firstly increases from12%to 19.8%and then decreases from 19.8%to 9.9%with the increment of Ag concentration.The tensile yield strength,ultimate tensile strength and elongation of Mg–3Zn–0.2Ag alloy reach up to 142,234 MPa and 19.8%,respectively,which are the best mechanical performance of Mg–Zn–Ag alloys in the present work.The extruded Mg–3Zn–0.2Ag alloy also possesses the best corrosion behavior with the corresponding corrosion rate of 3.2 mm/year in immersion test,which could be explained by the single-phase and uniformly distributed grain structure,and the fewer twinning.  相似文献   

9.
The microstructure and mechanical properties of Mg–6Zn–1Y and Mg–6Zn–3Y(wt%) alloys under different cooling rates were investigated. The results show that the second dendrite arm spacing(SDAS) of Mg–6Zn–1Y and Mg–6Zn–3Y is reduced by 32 and 30% with increasing cooling rates(Rc) from 10.2 to 23 K/s, which can be predicted using a empirical model of SDAS=68 R 0:45:45cand SDAS=73 R 0c, respectively. The compressive strength of both alloys increases with increasing the cooling rate, which is attributed to the increase of volume fraction(Vf) of secondary phases under high cooling rate. The interaction of the cooling rate and component with SDAS has been theoretically analyzed using interdependence theory.  相似文献   

10.
11.
Since most typical alloys in industrial applications are multicomponent with three or more components, and various CA models proposed in the past mainly focus on the binary alloys, a two-dimensional modified cellular automaton model allowing for the quantitatively predicting dendrite growth of multicomponent alloys in the low Pe′clet number regime is presented. The elimination of the mesh-induced anisotropy is achieved by adopting a modified virtual front tracking method. A new efficient method based on the lever rule is applied to calculate the solid fraction increment of the interfacial cells. The thermodynamic data such as liquidus temperature, the partition coefficients, and the slope of liquidus surface, needed for determining the dynamics of dendrite growth, are obtained by coupling with Pan Engine. This model is applied to simulate the dendrite morphology and microsegregation of Al–Cu–Mg ternary alloy both for single and multidendrites growth. The simulated results demonstrate that the difference of the concentration distribution profiles ahead of the dendrite tip for each alloying element mainly results from the different partition coefficients and solute diffusion coefficients. Comparison with the prediction of analytical model is carried out and it reveals the correctness of the model.Consequently, the difference in interdendritic microsegregation behavior of different components is analyzed.  相似文献   

12.
The age-hardening and overaging mechanisms related to the metastable phase formation by the decomposition of Ag and Cu in a dental casting gold alloy composed of 56Au–25Ag–11.8Cu–5Pd–1.7Zn–0.4Pt–0.1Ir (wt.%) were elucidated by characterizing the age-hardening behaviour, phase transformations, changes in microstructure and changes in element distribution. The fast and apparent increase in hardness at the initial stage of the aging process at 400°C was caused by the nucleation and growth of the metastable Ag–Au-rich phase and the Cu–Au-rich phase by the miscibility limit of Ag and Cu. The transformation of the metastable Ag–Au-rich phase into the stable Ag–Au-rich phase progressed concurrently with the ordering of the Cu–Au-rich phase into the AuCu I phase through the metastable state, which resulted in the subsequent increase in hardness. The further increase in hardness was restrained before complete decomposition of the parent α0 phase due to the initiation of the lamellar-forming grain boundary reaction. The progress of the lamellar-forming grain boundary reaction was not directly connected with the phase transformation of the metastable phases into the final product phases. The heterogeneous expansion of the lamellar structure from the grain boundary caused greater softening than the subsequent further coarsening of the lamellar structure. The lamellar structure was composed of the Ag–Au-rich layer which was Cu-, Pd- and Zn-depleted and the AuCu I layer containing Pd and Zn.  相似文献   

13.
The effect of long-term neutron irradiation and postradiation thermal-induced aging on the microstructure and mechanical properties of an aluminum-based reactor Al–Mg–Si alloy grade SAV-1 has been studied. The material under study is the shell of an automatic fine-control rod used to control the reactivity of the core of a VVR-K research reactor. Successive 1-h annealings of specimens of the SAV-1 alloy irradiated to doses of 0.001 and 5 dpa in the temperature range of 100–550°C have been carried out. The evolution of the fine structure of the material and changes in its mechanical characteristics have been studied. The phenomenon of the acceleration of the aging of the SAV-1 alloy under the effect of a high neutron fluence at an irradiation temperature of 80°C has been observed, which involves the formation of numerous lineage (stitch) Guinier–Preston zones in the alloy. It has been shown that the strength characteristics of the SAV-1 alloy depend significantly on the degree of its radiation- and thermal-induced aging.  相似文献   

14.
15.
16.
Four kinds of Mg alloys with different Zn and Ca concentration were selected to analyze the effect of Zn and Ca concentration on the microstructure and the mechanical properties of Mg–Zn–Ca alloys. It was found that Zn and Ca concentration has a great influence on the volume fraction, the morphology and the size of second phase. The Mg–1.95Zn–0.75Ca(wt%) alloy with the highest volume fraction, continuous network and largest size of Ca2Mg6Zn3 phase showed the lowest elongation to failure of about 7%, while the Mg–0.73Zn–0.12Ca(wt%) alloy with the lowest volume fraction and smallest size of Ca2Mg6Zn3 phase showed the highest elongation to failure of about 37%. It was suggested that uniform elongations of the Mg–Zn–Ca alloys were sensitive to the volume fraction of the Ca2Mg6Zn3 phases, especially the network Ca2Mg6Zn3phases; post-uniform elongations were dependent on the size of the Ca2Mg6Zn3 phase, especially the size of network Ca2Mg6Zn3 phase. Reduction in Zn and Ca concentration was an effective way to improve the roomtemperature ductility of weak textured Mg–Zn–Ca alloys.  相似文献   

17.
During high-strain-rate superplastic deformation, superplasticity indices, and the microstructure of two Al–Zn–Mg–Cu–Zr alloys with additions of nickel and iron, which contain equal volume fractions of eutectic particles of Al3Ni or Al9FeNi, have been compared. It has been shown that the alloys exhibit superplasticity with 300–800% elongations at the strain rates of 1 × 10–2–1 × 10–1 s–1. The differences in the kinetics of alloy recrystallization in the course of heating and deformation at different temperatures and rates of the superplastic deformation, which are related to the various parameters of the particles of the eutectic phases, have been found. At strain rates higher than 4 × 10–2, in the alloy with Fe and Ni, a partially nonrecrystallized structure is retained up to material failure and, in the alloy with Ni, a completely recrystallized structure is formed at rates of up to 1 × 10–1 s–1.  相似文献   

18.
Al–3Cu–Mg alloy was fabricated by the powder metallurgy (P/M) processes. Air-atomized powders of each alloying element were blended with various Mg contents (0.5%, 1.5%, and 2.5%, mass fraction). The compaction pressure was selected to achieve the elastic deformation, local plastic deformation, and plastic deformation of powders, respectively, and the sintering temperatures for each composition were determined, where the liquid phase sintering of Cu is dominant. The microstructural analysis of sintered materials was performed using optical microscope (OM) and scanning electron microscope (SEM) to investigate the sintering behaviors and fracture characteristics. The transverse rupture strength (TRS) of sintered materials decreased with greater Mg content (Al–3Cu–2.5Mg). However, Al–3Cu–0.5Mg alloy exhibited moderate TRS but higher specific strength than Al–3Cu without Mg addition.  相似文献   

19.
《Acta Materialia》2001,49(1):65-75
In the present investigation a special control volume formulation of the classical precipitation model for coupled nucleation, growth and coarsening has been adopted to describe the evolution of the particle size distribution with time during thermal processing of Al–Mg–Si alloys. The analysis includes both isothermal and non-isothermal transformation behaviour. Well established dislocation theory is then used to evaluate the resulting change in hardness or yield strength at room temperature, based on a consideration of the intrinsic resistance to dislocation motion due to solute atoms and particles, respectively following heat treatment. The model is validated by comparison with experimental microstructure data obtained from transmission electron microscope examinations and hardness measurements, covering a broad range in the experimental conditions. It is concluded that the model is sufficiently relevant and comprehensive to be used as a tool for predicting the response of Al–Mg–Si alloys to thermal processing, and some examples are given towards the end.  相似文献   

20.
《Acta Materialia》1999,47(3):769-777
The type-II superconducting properties of heavily deformed Cu–Ag–Nb wires, containing only 4 wt% (4.18 vol.%) of elongated Nb filaments as a separate superconducting phase, were investigated as a function of microstructure, temperature, total wire strain, and external magnetic fields. The microstructure of the wires was examined using optical and electron microscopy. The experimental observation of the proximity effect, i.e. of the penetration of the superconducting state into the normal resistive Cu–Ag matrix leading to bulk-superconductivity, is explained in terms of the experimentally determined topology of the microstructure in conjunction with Ginzburg–Landau theory. The pronounced drop of the critical temperature and of the critical magnetic field with increasing wire strain is explained in terms of the reduced thickness of the ductile Nb filaments which is at large strains of the order of the Ginzburg–Landau correlation length in Nb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号