首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Analysis of various existing correlations including a three-zone evaporation model is made using a comparison with recent experimental results obtained in this study. Flow boiling heat transfer experiments were conducted with two stainless steel tubes of internal diameter 4.26 mm and 2.01 mm. The working fluid was R134a and parameters were varied in the range: mass flux 100–500 kg/m2s; pressure 8–12 bar; quality up to 0.9; heat flux 13–150 kW/m2. The local heat transfer coefficient was independent of vapour quality when this was less than about 40–50% in the 4.26 mm tube and 20–30% in the 2.01 mm tube. Local transient dryout was deduced when the quality was above these values. Furthermore, at high heat flux values the heat transfer coefficient decreased with vapour quality for the entire quality range indicating early occurrence of dryout.Existing correlations, which are based on large tube boiling processes, do not predict the present small diameter data to a satisfactory degree. A better agreement is observed with the recent, state-of-the-art, three-zone evaporation model. However, the model does not predict the effect of diameter and the partial dryout. Nevertheless, the observation suggests that the flow pattern based modelling approach performs at least as well as empirical correlations that are based on macroscale modelling. Aspects of the model that need further consideration are also proposed in this study.  相似文献   

2.
Evaporation heat transfer characteristics of carbon dioxide (CO2) in a horizontal tube are experimentally investigated. The test tube has an inner diameter of 6.0 mm, a wall thickness of 1.0 mm, and a length of 1.4 m. Experiments are conducted at saturation temperatures of 5 and 10 °C, mass fluxes from 170 to 320 kg/m2 s and heat fluxes from 10 to 20 kW/m2. Partial dryout of CO2 occurs at a lower quality as compared to the conventional refrigerants due to a higher bubble growth within the liquid film and a higher liquid droplet entrainment, resulting a rapid decrease of heat transfer coefficients. The effects of mass flux, heat flux, and evaporating temperature are explained by introducing unique properties of CO2, flow patterns, and dryout phenomenon. In addition, the heat transfer coefficient of CO2 is on average 47% higher than that of R134a at the same operating conditions. The Gungor and Winterton correlation shows poor prediction of the boiling heat transfer coefficient of CO2 at low mass flux, while it yields good estimation at high mass flux.  相似文献   

3.
An experiment for heat transfer of water flowing in a vertical rifled tube was conducted at subcritical and supercritical pressure. The main purpose is to explore the heat transfer characteristics of the new-type rifled tube at low mass flux. Operating conditions included pressures of 12–30 MPa, mass flux of 232–1200 kg/(m2 s), and wall heat fluxes of 133–719 kW/m2. The heat transfer performance and wall temperature distribution at various operating conditions were captured in the experiment. In the present paper, the heat transfer mechanism of the rifled tube was analyzed, the effects of pressure, wall heat flux and mass flux on heat transfer were discussed, and corresponding empirical correlations were also presented. The experimental results exhibit that the rifled tube has an obvious enhancement in heat transfer, even at low mass flux. In comparison with a smooth tube, the rifled tube efficiently prevents Departure from Nucleate Boiling (DNB) and delays dryout at subcritical pressure, and also improves the heat transfer of supercritical water remarkably, especially near pseudo-critical point. An increase in pressure or wall heat flux impairs the heat transfer at both subcritical and supercritical pressure, whereas the increasing mass flux has a contrary effect.  相似文献   

4.
Flow boiling heat transfer of R-134a refrigerant in a circular mini-channel, 600 mm long with a diameter of 1.75 mm, is investigated experimentally in this study. The test section is a stainless steel tube placed horizontally. Flow pattern and heat transfer coefficient data are obtained for a mass flux range of 200–1000 kg/m2 s, a heat flux range of 1–83 kW/m2 and saturation pressures of 8, 10, and 13 bar. Five different flow patterns including slug flow, throat-annular flow, churn flow, annular flow and annular-rivulet flow are observed and the heat transfer coefficient data for different flow patterns are presented. The heat transfer coefficient increases with increasing heat flux but is mostly independent of mass flux and vapour quality. In addition, it is indicated from the experiments that the higher the saturation pressure, the lower is the heat transfer coefficient. Comparisons of the present data with the existing correlations are also presented.  相似文献   

5.
The use of a boiling fluid as a coolant is an attractive option for electronic devices as electrical power densities increase. However, for systems working at the micro-scale, design methods developed for evaluating heat transfer in macro-scale evaporators are not appropriate for passages with hydraulic diameter of the order of 1 mm and below.Heat-transfer coefficients and pressure drops are reported for two surfaces, a pin-fin and a plate surface, each with 50 mm square base area. The pin-fin surface comprised of 1 mm square pin fins that were 1 mm high and located on a 2 mm square pitch array covering the base. The channel was 1 mm high and had a glass top plate. The data were produced while boiling R113 at atmospheric pressure. For both surfaces, the mass flux range was 50–250 kg/m2s and the heat flux range was 5–140 kW/m2. The results obtained have been compared with standard correlations for tube bundles.The measured heat-transfer coefficients for the pin-fin surface are slightly higher than those for the plate surface. Both are dependent on heat flux and reasonably independent of mass flux and vapour quality. Thus, heat transfer is probably dominated by nucleate boiling and is increased by the pin fins due to the increase in area and heat-transfer coefficient. The pin-fin pressure drops were typically 7 times larger than the plate values.The pin-fin heat-transfer coefficients and pressure drops are compared to macro-scale tube bundle correlations. At low vapour qualities the heat-transfer coefficients are in reasonable agreement with the correlations, but, as the vapour quality increases, they do not show the convective enhancement which would be expected for a conventionally-sized tube bundle. Measured two–phase pressure drops are in reasonable agreement with the tube bundle correlation.  相似文献   

6.
This study experimentally investigated the critical heat flux(CHF) of departure from nucleate boiling(DNB) of water flowing under near-critical pressures in a 2 m-long vertical upward rifled tube with the size of Φ35 × 5.67 mm. Operating conditions included pressures of 18–21 MPa, mass fluxes of 475–1000 kg·m~(-2)·s~(-1), inlet subcooling temperatures of 3–5°C, and wall heat fluxes of 40–960 kW·m~(-2). Tube wall temperature distribution and heat transfer performance in different test conditions were obtained. The effects of the operating parameters on CHF were analyzed. Four heat transfer coefficient correlations were evaluated against our experimental data for further investigation of the two-phase heat transfer characteristics. A heat transfer correlation based on Martinelli number utilized in two-phase region and two empirical correlations used to predict the CHF in rifled tube at near-critical pressures were proposed. Meanwhile, experimental CHF data in rifled tube were compared with six widely used correlations and a CHF look-up table. The CHF enhancement effect in rifled tube is obvious as compared with the CHF data in smooth tube. Results show that DNB occurs at low vapor quality and subcooled region in the rifled tube at near-critical pressures. The increase in pressure leads to the early occurrence of DNB and the decrease in CHF, whereas the increase in mass flux delays the occurrence of DNB and results in the increase in CHF. DNB presents a tendency to move toward the inlet of the rifled tube. At individual operating conditions, DNB and dryout coexist at different sections of the rifled tube.  相似文献   

7.
Three-dimensional simulations of condensation of refrigerant R134a in a horizontal minichannel are presented. Mass fluxes ranging from 50 kg m?2 s?1 up to 1000 kg m?2 s?1 are considered in a circular minichannel of 1 mm diameter, and uniform wall and vapour–liquid interface temperatures are imposed as boundary conditions. The Volume of Fluid (VOF) method is used to track the vapour–liquid interface; the effects of interfacial shear stress, gravity and surface tension are taken into account. The influence of turbulence in the condensate film is analysed and compared against the assumption of laminar condensate flow by employing different computational approaches and validating the results against experimental data. Under the assumption of laminar condensate flow, experimental heat transfer coefficient values at low mass fluxes can be predicted, but the computed heat transfer coefficient is found to be almost independent of mass flux and vapour quality. Only when turbulence in the condensate film is taken into account does the numerical model capture the influence of mass flux that is observed in the experimental measurements.  相似文献   

8.
The boiling heat transfer of refrigerant R-134a flow in horizontal small-diameter tubes with inner diameter of 0.51, 1.12, and 3.1 mm was experimentally investigated. Local heat transfer coefficient and pressure drop were measured for a heat flux ranging from 5 to 39 kW/m2, mass flux from 150 to 450 kg/m2 s, evaporating temperature from 278.15 to 288.15 K, and inlet vapor quality from 0 to 0.2. Flow patterns were observed by using a high-speed video camera through a sight glass at the entrance of an evaporator. Results showed that with decreasing tube diameter, the local heat transfer coefficient starts decreasing at lower vapor quality. Although the effect of mass flux on the local heat transfer coefficient decreased with decreasing tube diameter, the effect of heat flux was strong in all three tubes. The measured pressure drop for the 3.1-mm-ID tube agreed well with that predicted by the Lockhart–Martinelli correlation, but when the inner tube diameter was 0.51 mm, the measured pressure drop agreed well with that predicted by the homogenous pressure drop model. With decreasing tube diameter, the flow inside a tube approached homogeneous flow. The contribution of forced convective evaporation to the boiling heat transfer decreases with decreasing the inner tube diameter.  相似文献   

9.
In this paper we present experimental data on heat transfer and pressure drop characteristics at flow boiling of refrigerant R-134a in a horizontal microchannel heat sink. The primary objective of this study was to experimentally establish how the local heat transfer coefficient and pressure drop correlate with the heat flux, mass flux, and vapor quality. The copper microchannel heat sink contains 21 microchannels with 335 × 930 μm2 cross section. The microchannel plate and heating block were divided by the partition wall for the local heat flux measurements. Distribution of local heat transfer coefficients along the length and width of the microchannel plate was measured in the range of external heat fluxes from 50 to 500 kW/m2; the mass flux varied within 200–600 kg/m2-s, and pressure varied within 6–16 bar. The obvious impact of heat flux on the magnitude of heat transfer coefficient was observed. It showed that nucleate boiling is the dominant mechanism for heat transfer. A new model of flow boiling heat transfer, considering nucleate boiling suppression and liquid film evaporation, was proposed and verified experimentally in this paper.  相似文献   

10.
In the absorbers of air-cooled water–lithium bromide absorption chillers, the absorption process usually takes place inside vertical tubes with external fins. In this paper we have carried out an experimental study of the absorption of water vapour over a wavy laminar falling film of water–lithium bromide on the inner wall of a smooth vertical tube. The control variables for the experimental study were; absorber pressure, solution mass flow rate, solution concentration and cooling water temperature. Relatively high cooling water temperatures were selected to simulate air-cooling thermal conditions. The parameters considered to assess the performance of the absorber were; the mass absorption flux, the outlet solution degree of subcooling and the falling film heat transfer coefficient. The results indicate that in water cooling thermal conditions the mass absorption fluxes are in the range 0.001–0.0015 kg·m−2·s−1, whereas in air-cooling thermal conditions the range of mass absorption values decreases to 0.00030–0.00075 kg·m−2·s−1.  相似文献   

11.
The dryout for flow boiling carbon dioxide (CO2) in horizontal small diameter tubes is investigated through experiment and theoretical modeling. Tests are conducted in conditions where the saturation temperature is 0, 5, and 10 °C, heat flux is 7.2-48.1 kW/m2 and mass flux is 500-3000 kg/m2 s. The dryout phenomena of CO2 are similar with those of water in many respects, while the effects of mass flux on dryout show differences among them. The dryout of CO2 is predicted by a theoretical dryout model, which is developed and verified with steam-water data. Two entrainment mechanisms of interface deformation and bubble bursting are considered in the model and dryout is determined when the liquid film thickness is less than the critical liquid film thickness, the criteria film thickness of dryout. The present model well predicts the experimental critical qualities except when mass flux is relatively high, at which the deposition of liquid droplet on the liquid film and the occurrence of dryout patches become very significant.  相似文献   

12.
A new flow boiling heat transfer model and a new flow pattern map based on the flow boiling heat transfer mechanisms for horizontal tubes have been developed specifically for CO2. Firstly, a nucleate boiling heat transfer correlation incorporating the effects of reduced pressure and heat flux at low vapor qualities has been proposed for CO2. Secondly, a nucleate boiling heat transfer suppression factor correlation incorporating liquid film thickness and tube diameters has been proposed based on the flow boiling heat transfer mechanisms so as to capture the trends in the flow boiling heat transfer data. In addition, a dryout inception correlation has been developed. Accordingly, the heat transfer correlation in the dryout region has been modified. In the new flow pattern map, an intermittent flow to annular flow transition criterion and an annular flow to dryout region transition criterion have been proposed based on the changes in the flow boiling heat transfer trends. The flow boiling heat transfer model predicts 75.5% of all the CO2 database within ±30%. The flow boiling heat transfer model and the flow pattern map are applicable to a wide range of conditions: tube diameters (equivalent diameters for non-circular channels) from 0.8 to 10 mm, mass velocities from 170 to 570 kg/m2 s, heat fluxes from 5 to 32 kW/m2 and saturation temperatures from −28 to 25 °C (reduced pressures from 0.21 to 0.87).  相似文献   

13.
A flow visualisation study of flow boiling of R245fa in silicon multi-microchannels at low mass flux and moderate heat flux has been carried out with a high speed digital camera. The micro-evaporator had 67 channels of length 20 mm, width 223 μm, and height 680 μm while the fin width between adjacent channels was 80 μm. The base heat flux ranged from 2 to 26 W cm?2 for a mass velocity of 100 kg s?1 m?2, resulting in exit vapour qualities ranging from 10% to 70%. In particular, a novel time strip technique was developed to analyse the recorded image sequences and significantly highlight the various phenomena occurring along given channels. Notably, this technique was able to reveal profound details regarding the intermittent dryout mechanism of liquid films trapped between the elongated bubbles and the heated channel walls. The results show that the intermittent dryout of the evaporating liquid film is comprised of four stages with distinct time scales and dynamics: (i) the growth of liquid film thinning perturbations to a critical amplitude causing the rupture of the metastable liquid film, (ii) a dewetting stage involving expanding dry spots leading to a rivulet flow regime, (iii) evaporation of the rivulets leading to full dryout, and (iv) a rewetting stage. This intermittent dryout mechanism appears to explain the many seemingly contradictory heat transfer coefficient trends observed with changes in vapour quality in microchannels, thus resolving an important heat transfer dilemma. Furthermore, since dryout is an undesirable event during the practical application of a microchannel evaporator, it is important to delay or even suppress the initial rupture of the liquid film that leads to dryout. This can be achieved by manufacturing or treating the channel surfaces to be highly wettable with the chosen refrigerant.  相似文献   

14.
This study investigates the heat transfer characteristics and flow pattern for the dielectric fluid HFE-7100 within multiport microchannel heat sinks with hydraulic diameters of 480 μm and 790 μm. The test results indicate that the heat transfer coefficient for the smaller channel is generally higher than that of the larger channel. It is found that the heat transfer coefficients are roughly independent of heat flux and vapor quality for a modest mass flux ranging from 200 to 400 kg m?2 s?1 at a channel size of 480 μm and there is a noticeable increase of heat transfer coefficient with heat flux for hydraulic diameters of 790 μm. The difference arises from flow pattern. However, for a smaller mass flux of 100 kg m?2 s?1, the presence of flow reversal at an elevated heat flux for hydraulic diameters of 480 μm led to an appreciable drop of heat transfer coefficient. For a larger channel size of 790 μm, though the flow reversal is not observed at a larger heat flux, some local early partial dryout still occurs to offset the heat flux contribution and results in an unconceivable influence of heat flux. The measured heat transfer coefficients for hydraulic diameters of 790 μm are well predicted by the Cooper correlation. However, the Cooper correlation considerably underpredicts the test data by 35–85% for hydraulic diameters of 480 μm. The influence of mass flux on the heat transfer coefficient is quite small for both channels.  相似文献   

15.
The present paper deals with the simulation of a kettle reboiler. Considering rectangular tube sheet, concept of internal recirculation developed in a kettle reboiler during boiling, changes in physico-thermal property of liquid and liquid vapour mixture with temperature and pressure and using empirical correlations, a hydrodynamic model has been developed to determine pressure drop, vapour quality, recirculation rate, boiling regime, and heat transfer coefficient at various tube rows of the bundle.Results show, recirculation rate in a reboiler has been found to vary with the heat flux and pressure. Further, at a given value of heat flux and pressure vapour quality, mass flux, and heat transfer coefficient have been found to increase gradually from bottom to top tube row of the bundle.  相似文献   

16.
17.
A set of closure relations, in the context of a one-dimensional three-fluid model, is presented for the prediction of dryout and post-dryout heat transfer at high pressure (P/Pcr>0.3) conditions. It is shown that the traditional models based on low pressure data for interfacial friction, droplet size and the transition criteria for onset of annular flow cannot be readily extended to high pressure situations. The proposed new relations are validated by comparing with literature data in the pressure range of 30-200 bar, mass flux range of 500-3000 kg m−2 s−1 and tube inner diameters in the range of 10-25 mm. Good agreement is obtained for the dry out quality and the tube wall temperature in the post-dry out region except for cases of low mass flux at high pressures. The predictions show that at high pressure, high mass flux conditions, annular flow may prevail for low gas phase volume fraction, the droplet and the liquid film volume fractions being an order of magnitude higher than those encountered in typical air-water experiments.  相似文献   

18.
New correlations of the two-phase multiplier and heat transfer coefficient of R134a during evaporation in a multiport minichannel at low mass flux are proposed. The experimental results were obtained from a test using a counter-flow tube-in-tube heat exchanger with refrigerant flowing in the inner tube and hot water in the gap between the outer and inner tubes. Test section is composed of the extruded multiport aluminium inner tube with an internal hydraulic diameter of 1.2 mm and an acrylic outer tube with an internal hydraulic diameter of 25.4 mm. The experiments were performed at heat fluxes between 10 and 35 kW/m2, and a refrigerant mass flux between 45 and 155 kg/(m2 s). Some physical parameters that influenced the frictional pressure drop and heat transfer coefficient are examined and discussed in detail. The pressure drop and heat transfer coefficient results are also compared with existing correlations. Finally, new correlations for predicting the frictional pressure drop and heat transfer coefficient at low mass fluxes are proposed.  相似文献   

19.
Convective boiling heat transfer coefficients and dryout phenomena of CO2 are investigated in rectangular microchannels whose hydraulic diameters range from 1.08 to 1.54 mm. The tests are conducted by varying the mass flux of CO2 from 200 to 400 kg/m2 s, heat flux from 10 to 20 kW/m2, while maintaining saturation temperature at 0, 5 and 10 °C. Test results show that the average heat transfer coefficient of CO2 is 53% higher than that of R134a. The effects of heat flux on the heat transfer coefficient are much significant than those of mass flux. As the mass flux increases, dryout becomes more pronounced. As the hydraulic diameter decreases from 1.54 to 1.27 mm and from 1.27 to 1.08 mm at a heat flux of 15 kW/m2 and a mass flux of 300 kg/m2 s, the heat transfer coefficients increase by 5% and 31%, respectively. Based on the comparison of the data from the existing models with the present data, the Cooper model and the Gorenflo model yield relatively good predictions of the measured data with mean deviations between predicted and measured data of 21.7% and 21.2%, respectively.  相似文献   

20.
This article is the second in a three-part study. This second part focuses on flow boiling heat transfer of refrigerant R245fa in a silicon multi-microchannel heat sink and their comparison with the results presented in part I for refrigerant R236fa. This heat sink was the same as utilized in part I. The test conditions covered base heat fluxes from 3.6 to 190 W/cm2, mass velocities from 281 to 1501 kg/m2 s and the exit vapour qualities from 0% to 78%. The effect of saturation pressure on heat transfer was tested from 141 to 273 kPa for R245fa and the effect of sub-cooling from 0 to 19 K. The R245fa database includes 693 local heat transfer coefficient measurements, for which four different heat transfer trends were identified, although in most cases the heat transfer coefficient increased with heat flux, was almost independent of vapour quality and increased with mass velocity. The entire database, including both R245fa and R236fa measurements, was compared with four prediction methods for flow boiling heat transfer in microchannels. The three-zone model of Thome et al. (J.R. Thome, V. Dupont, A.M. Jacobi, Heat transfer model for evaporation in microchannels. Part I: presentation of the model, International J. Heat Mass Transfer 47 (2004) 3375–3385) was found to give the best predictions, capturing 90% of the data within ±30% in the slug and annular flow regimes (x > 5%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号