首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stability and support effects of large-scale underground caverns located in jointed rock masses are principally ruled by the mechanical behavior of discontinuities. The major deformations of the host rock masses containing underground caverns originate from the normal and shear movements among the walls of discontinuities. Therefore, in the numerical simulations of the deformation behavior of underground structures, how to accurately model the discontinuities becomes a key problem. In this study, a 2-D distinct element code, UDEC, was used to analyze the deformation behavior of an underground cavern of a pumped storage power plant, based on in-situ geological data. The validity of numerical simulation was evaluated by comparing the numerical results with the site measurement data at two cross-sections of the cavern. Some local deformation behavior of the cavern affected by the characteristics of discontinuity distributions was discussed. The influences of cross-sectional shape of the cavern and the orientation of initial ground stress on the performance of cavern were evaluated. The simulation results revealed that the orientation, position and density of discontinuities as well as the cross-sectional shape of a carven influence its deformation behavior and stability significantly.  相似文献   

2.
Mechanisms of deformation and failure of underground opening in jointed rock masses are governed by the characteristics of the geometrical distribution of discontinuities. In this paper, the extracting method of geometrical distribution of discontinuities in rock masses by image processing is presented and used to make networks of rock joints from the construction field. Next, using those networks, fractal characteristics of the discontinuities are described by using the box-counting method for quantitatively evaluating the state of the discontinuous distribution. Finally, numerical analysis based a case of the excavation of underground power plant is carried out to find the relation between geometrical distribution of rock joints and deformational behavior of underground opening by using distinct element method.  相似文献   

3.
龙滩水电站地下厂房开挖区域岩体不连续面发育,确定厂房开挖面是否可能产生可动块体并判断其稳定性具有重要实际意义。块体理论是适用于分析断层、节理发育破碎刚性岩体稳定性的有效方法,在对场区工程岩体勘察资料的详细研究基础上,运用块体理论赤平解析法分析龙滩水电站地下厂房洞室群的稳定性,对各开挖面构成可能移动块体的不连续面分布情况进行较系统的评价,得出厂房各部分可动块体分布的直观统计结果,为设计有效的加固方案提供了依据。  相似文献   

4.
以某水电站为工程背景,介绍了两种确定裂隙岩体REV的新方法:数字图像处理法和非连续变形DDARF法。依据水电站岩性差异、风化及卸荷程度,将围岩划分为若干工程地质区段并建立随机裂隙网络模型,研究尺寸效应对岩体力学参数的影响规律,获得了REV表征尺寸和等效力学参数;得到岩体的非线性强度准则,嵌入FLAC3D对水电站开挖进行模拟,并监测关键点位移。结果表明:水电站围岩的抗压强度与围压成正相关;洞室开挖对厂房上下游中部和拐角处影响较大,应加强对这些部位的支护;关键点的位移数值结果与现场监测值基本吻合,误差小于5%。数字图像处理法和DDARF法为裂隙岩体REV的确定开拓了新思路,对复杂条件下地下洞室围岩的稳定性分析有广泛的应用前景。  相似文献   

5.
In this paper, the mechanical behavior of inclined jointed rock masses during tunneling is considered. Such rock masses can be considered as an assembly of discrete blocks with the discontinuities having a significant influence on the mechanical behavior. To simulate this situation, a discrete numerical analysis method, Discontinuous Deformation Analysis (DDA), is applied. The DDA results show the existence of stress arching in the rock masses during tunneling. This stress arching is the primary influence on the stress distribution and surface subsidence. In addition, the stress arching is affected by the dip angle of the jointed rock masses. Moreover, the DDA results are in good agreement with experiments, explaining the reason for the asymmetrical vertical stress and surface subsidence obtained in laboratory tests. These results suggest that DDA can be applied to model the tunneling behavior of complicated discontinuous rock masses.  相似文献   

6.
 为解决工程岩体开挖中含有复杂开挖边界时的块体识别问题,提出岩石块体识别的单元重构–聚合方法。首先,引入成熟的网格划分技术,通过建立网格模型(如有限元模型),实现对复杂开挖边界的精确模拟;其次,采用基于单元重构技术的结构面建模方法,将分布于岩体内的结构面建入网格模型;然后,提出基于单元聚合技术的块体构建方法和考虑有限性结构面时的单元组处理方法;最终可实现基于网格模型的复杂岩石块体识别。该方法识别所得的块体系统基于网格模型,块体的所有特征信息均可通过模型的单元和节点提取,块体的可视化也可在既有网格模型图形显示平台上实现。算例验证表明,当将结构面分别考虑为无限延伸和有限延展时,该方法的块体识别和稳定分析成果均与通用块体分析软件的结果一致。进一步将该方法应用于水电站大型地下洞室群的块体识别,可证明其应用于复杂岩石块体识别的有效性和优越性。因此,该方法是一种能够考虑复杂工程岩体开挖边界的岩石块体识别的新方法,其实现过程独立于基于拓扑原理的传统块体识别思路,为块体稳定分析提供了新的实现途径。  相似文献   

7.
Two modifications are made to enable the use of the discontinuous deformation analysis (DDA) method to investigate the sequential construction of an underground cavern complex. One modification is the “block birth and death” approach. With the aid of a boundary block searching algorithm, this approach excavates the blocks in any closed domain step by step and is verified by a DDA example. The other modification is an updating algorithm of the rock bolt called the dull-reactivating method. In this new algorithm, the coordinates of the ending endpoints of the dull rock bolts are regularly updated and the corresponding rock bolts in the sequential reinforcement region are reactivated. The initial geostress field and the sequential construction of the underground cavern complex of the Dagangshan hydropower station in Southwest China are simulated with the modified DDA method. Valuable results are obtained by analysing the displacement, stress and rock bolt force. In the construction processes, the blocks around each cavern form a bearing capacity system to prevent the block deformation, and the rock bolts jointly support the stress release as a system. At the sidewalls of the main machine building and the downstream side wall of the tail surge chamber, the blocks cut by joints with a high dip angle suffer a strong stress release, and the tension forces of the several rock bolts are so large that they should be noticed, which provides a basis for the construction guidance of the project.  相似文献   

8.
This paper examines the effect of different geological and mining factors on roof stability in underground coal mines by combining field observations, laboratory testing, and numerical modeling. An underground coal mine in western Pennsylvania is selected as a case study mine to investigate the underlying causes of roof falls in this mine. Three-dimensional distinct element analyses were performed to evaluate the effect of different parameters, such as the variation of immediate roof rock mass strength properties, variation of discontinuity mechanical properties, orientations and magnitudes of the horizontal in-situ stresses, and the size of pillars and excavations on stability of the immediate roof. The research conducted in this paper showed that the bedding planes play an important role on the geo-mechanical behavior of roofs in underground excavations. Therefore, an appropriate numerical modeling technique which incorporates the effect of discontinuities should be employed to simulate the realistic behavior of the discontinuous rock masses such as the layered materials in roof strata of the underground coal mines. The three-dimensional distinct element method used in this research showed the capability of this technique in capturing the important geo-mechanical behavior around underground excavations.  相似文献   

9.
岩石应变软化模型在深埋隧洞数值分析中的应用   总被引:10,自引:8,他引:2  
 随着地下洞室的大量兴建,且埋深越来越深,深埋地下洞室的开挖稳定性问题显得非常重要。针对深埋隧洞围岩特殊的力学特性表现,采用应变软化模型进行数值分析更为合适。首先,对深埋隧洞围岩力学特性和岩石应变软化模型进行简单分析,并且通过数值加载试验分析了Mohr-Coulomb弹塑性模型和应变软化模型计算得到岩石应力–应变关系之间的区别。然后,对简单圆形深埋隧洞进行数值分析,对比分析了Mohr-Coulomb弹塑性模型和应变软化模型计算结果之间的差别,分析主要针对围岩的变形、塑性区和安全系数。最后,采用应变软化模型对两家人水电站深埋地下洞室群进行计算分析,对该地下洞室群的开挖稳定性进行评价。计算结果表明,调压室主室两侧边墙和各洞室连接处的变形较大,较其他地方更危险,需要加强对调压室主室边墙和各洞室连接处的支护强度。  相似文献   

10.
This paper examines the significance of mechanical layering for “blocky” rock mass deformation around underground openings excavated through sedimentary rocks. The analysis is based on an integration of geologically based discrete fracture models (“geoDFN”), which incorporate “mechanical layering”, with the numerical discrete element method—the discontinuous deformation analysis (DDA). We begin with addressing limitations of classical solutions for mine roof stability in layered and jointed rock masses via the analysis of the free standing, unsupported, 2000-year-old underground quarry known as Zedekiah's cave below the old city of Jerusalem, Israel. We show that both the “clamped beam” model and the “Voussoir beam analogue” fail to predict the observed roof stability. Only application of discrete element modeling, which allows for interactions between multiple blocks in the rock mass, can capture correctly the arching mechanism which takes place in the roof and which properly explains the long-term stability of this underground opening.We continue with examining the effect of joint trace geometries on “blocky” rock mass deformation using the hybrid geoDFN-DDA approach. We show that with increasing joint length and decreasing bridge length vertical deformations in the rock mass are enhanced. We explain this by the greater number of distinct blocks in the rock mass due to the greater joint intersection probability in such geometries. We find that rock bridge length is particularly important when considering the stability of the immediate roof. With increasing rock bridge length the number of blocks in immediate roof decreases and consequently individual block width is increased. Increased block width in immediate roof layers enhances stable arching development, thus improving their load carrying capacity and overall stability of the underground structure.  相似文献   

11.
Time dependent effects or creep behavior of rocks has great importance in further development of knowledge in the field of rock mechanics. An increase of pressure on support system due to creep behavior of rock is one of the most important issues in underground structure with weak surrounding rock mass. In this contribution a time-dependent behavior analysis of Siah Bisheh pumped storage powerhouse cavern with complex geometry being under construction on the Chalus River at the north of Iran were investigated. The cavern surrounded rocks containing Shale, Limestone, Sandstone and igneous rock in major parts is located in Alborz Structural Zone. The cavern is being built in a region that is highly prone to sheared and faulted zones. Therefore, it is essential to analyze and design underground structures to prevent any serious long-term damages in this region. The rock mass may exhibit continuous or discontinuous deformations due to excavation of large underground openings; therefore, deformation include shearing of joints and creep deformation of rock material. Because of the fractured and jointed rock mass, the Discrete Element method used to back analysis the time-dependent behavior of the Siah Bisheh cavern. In addition, triaxial creep tests were performed on rock specimens in order to estimate the time-dependent behavior of rock around the cavern. The creep tests and in situ measurements were employed to estimate parameters of power constitutive creep model being able to model the primary and secondary creep regions of rock masses implemented in the 3-Dimensional Distinct Element Code. Simulation results show good agreement with monitoring data. By excavating the lower stages of the cavern, some instantaneous deformation occurs in displacement-time curve of the crown.  相似文献   

12.
 为实现数值仿真计算结果能准确反映大型洞室围岩实际力学行为,结合锦屏二级水电站地下厂房枢纽洞室群稳定性分析,在阐述大型地下洞室群数值仿真计算要点基础上,首先重点从岩体本构模型识别和力学参数识别2个方面详细介绍如何实现数值仿真计算的正确化。采用考虑空间分布协调的多元监测信息的6次岩体力学参数跟踪识别,获得锦屏二级地下厂房岩体的等效力学参数,从而通过参数反分析的方法在一定程度上证明岩体等效力学参数具有相对稳定性和可识别性。同时,结合数值模拟展现出的围岩应力、变形、塑性区等方面计算结果与工程岩体的具体地质条件和洞室群结构特点,论述锦屏二级水电站地下厂房上游高边墙变形较大、下游侧拱围岩与喷混凝土破坏、母线洞环状开裂、交叉洞口局部塌落等洞室围岩的变形与破坏机制。最后,结合锦屏二级地下厂房枢纽洞室群稳定性分析与实践的研究认识,对大型地下洞室修建中诸如结构面密集的高边墙支护问题、围岩应力集中区支护问题、工程区地下水对围岩稳定性影响等问题进行论述,并探讨如何通过数值仿真计算、现场监测与经验丰富的专业人员的有机结合来实现大型地下洞室群稳定性设计的科学化。  相似文献   

13.
绿片岩软弱结构面的剪切蠕变特性研究   总被引:5,自引:1,他引:4  
 针对锦屏II级水电站引水隧洞超埋深、高地应力的特点,选取边坡和地下洞室围岩中含有绿片岩软弱结构面的灰白色大理岩为研究对象,对含有软弱结构面的大理岩试样进行分级加载剪切流变试验,并对试验结果进行分析,探讨软弱结构面的蠕变特性。通过对不同法向应力条件下岩体结构面的蠕变力学特性及其规律的研究,以及对结构面剪切蠕变试验过程中的蠕变速率特性进行分析,结果显示结构面的剪切蠕变试验曲线表现出明显的3个阶段。在此基础上选用改进的Burger模型对结构面蠕变试验结果进行拟和分析,并讨论改进的Burger模型对于描述结构面剪切蠕变特性的适用性。  相似文献   

14.
在3D DDA中,分析的块体是由岩体内部实际存在的不连续面切割而成。在计算过程中,利用块体的几何关系正确地寻找出可能产生接触碰撞的块体,并在块体接触时利用接触弹簧来评估接触面法线方向的接触力:另外,在剪切方向则遵守摩尔-库仑破坏准则,最后以独创的开合迭代方法来保证每一计算步长具有较准确的接触力和解算的收敛性。计算的结果与位于日本天鸟桥西的现场监测影像进行对照后发现,此新计算法可以高精度地预测岩体失稳过程。—  相似文献   

15.
官地水电站地下厂房属典型的硬岩地区深埋大型地下洞室群,其重要特点是同时面临高地应力和结构面发育这2个不利条件,实测最大主应力为25~35 MPa,厂区无大的断层和软弱结构面,但错动带和裂隙十分发育。通过对地下洞室群施工过程中出现的围岩局部失稳破坏现象进行全面的分析整理,对三大洞室的岩体结构特征和围岩变形破坏模式进行系统的分析、比较和总结,从而对影响围岩稳定的两大控制因素——地应力和岩体结构对官地地下厂房洞室群围岩稳定的影响程度和方式进行分析和对比。研究表明,由于三大洞室围岩类别以II类为主,岩体结构以块状~次块状结构为主,围岩具有较高的力学强度和强度应力比,从而具有较强的抵抗应力破坏的能力;岩体结构对地下厂房围岩变形与稳定的控制作用较地应力则更为明显,地下洞室群开挖过程中出现的局部失稳或较大变形多与不利方位的结构面直接相关。三大洞室围岩岩体结构特征总体上的相似性非常明确,反映在三大洞室围岩的变形特征和破坏模式上具有很好的统一性。然而,三大洞室的岩体结构特征也存在一定的差异,导致岩体结构影响围岩稳定的方式和程度有所不同。结构面发育造成的另一个不利影响是为坚硬岩体在高地应力条件下产生卸荷时效变形提供了内部条件。因此,在强度应力比较高的硬岩地区,应充分重视岩体结构及其演化对围岩变形和稳定的控制效应。  相似文献   

16.
提出一种可以综合考虑围岩节理分布特性、爆破施工损伤以及施工过程的新三维快速数值仿真模拟技术,并将其成功地应用于日本宫崎县120×10~4kW蓄能水力发电工程大型地下厂房的信息化施工中。依据多种测试手段,对开挖后围岩的稳定性和变形进行实时监测,并对数值模型进行三维反演分析和修正,比较准确地预测了围岩的动态变化过程,并对支护结构设计的可靠性和合理性进行了详细的论证。  相似文献   

17.
三维块体接触判断方法的分析与改进   总被引:2,自引:1,他引:2  
非连续变形分析方法和离散单元法都是可以计算非连续介质大位移问题的数值方法,目前在二维问题的计算中应用较多,但在工程实际问题的计算中还未能得到广泛应用,因为实际的工程问题如岩体结构都是三维问题。而在计算三维问题时存在一个困难,就是难以快速、准确地判断块体之间的接触类型。对已有的3种接触判断方法尤其是其中已用于实际计算的公共面法、侵入边法进行分析,指出各种方法在进行接触判断时存在的问题。同时在综合已有方法优点的基础上,给出建立正确接触判断方法的原则并提出切割体法。2个算例的计算结果表明,该方法的确有效地解决了已有方法存在的问题,能够正确判断三维块体之间的接触关系,从而模拟块体之间的错动滑移过程。  相似文献   

18.
An interlayer shear weakness zone (ISWZ) is a weak zonal geotechnical system of variable thickness that occurs between different rock strata (e.g., tuff and basalt). At the site of the future Baihetan hydropower station, Sichuan Province, China, because of the relatively poor ISWZ mechanical properties, the overall stability of the underground powerhouse is potentially at risk. In this study, to evaluate the effects of ISWZs on the stability of the future underground powerhouse by means of three-dimensional continuum modeling (3-D continuum modeling), the concept of a virtual rock mass composed of ISWZ and host rock is proposed. An equivalent continuum approach, including a rock–soil composite material (RSCM) model, is elaborated, with corresponding expressions for the input parameters. Comparisons were made between the predictions from the RSCM model, the results obtained by an analytic method, and existing data from physical model tests. The comparison showed that all three types of information showed good consistency in terms of failure mode and strength. This indicates the suitability of the RSCM model for describing the behavior of a rock mass containing discontinuities. Furthermore, comparison between the predictions of the proposed equivalent continuum approach, the joint element approach, and the solid element approach for a deformation of a test tunnel section containing an ISWZ show that the results produced by the first two approaches are similar, but much smaller than that using the third approach. Further comparison of the actual state of the ISWZ-containing rock mass in the test tunnel section confirmed the applicability of the proposed equivalent continuum approach to prediction of deformation of the rock masses containing ISWZs at the future Baihetan underground powerhouse site.  相似文献   

19.
边坡及洞室岩体的全空间块体拓扑搜索研究   总被引:7,自引:4,他引:3  
 在一定空间区域内,由三维有限长的随机结构面及确定性结构面切割形成的所有块体的搜索问题,即全空间块体搜索问题,是裂隙岩体研究中十分重要的基础性课题。在随机结构面切割下全空间块体拓扑搜索一般方法研究基础上,进行边坡及洞室岩体的全空间块体搜索问题研究。给出计算分析过程,包括三维结构面网络模拟、结构面与边界面之间的交线分析、封闭回路分析、回路空间位置分析、孤立回路删除、相关回路分析以及封闭块体搜索等,并对其中的结构面与边界面交线求解进行重点讨论。对块体切割中出现的简单凸多面体及凹多面体、坑体、环体、腔体等4种块体类型进行分析,基于单连通和复连通回路的不同特点,讨论如何统一地对4种块体类型进行搜索分析,从而实现边坡/洞室岩体的全空间块体拓扑搜索技术。在此基础上,基于经典的块体理论,实现边坡/洞室工程中的块体渐进失稳分析技术。最后,针对边坡和洞室算例进行分析和讨论。  相似文献   

20.
Understanding three-dimensional(3D) in situ stress field is of key importance for estimating the stability of large deep underground cavern groups near valleys.However,the complete 3D in situ stress fields around large deep underground cavern groups are difficult to determine based on in situ stress data from a limited number of measuring points due to the insufficient representativeness and unreliability of such measurements.In this study,an integrated approach for estimating the 3D in situ stress field around a large deep underground cavern group near a valley is developed based on incomplete in situ stress measurements and the stress-induced failures of tunnels excavated prior to the step excavation of the cavern group.This integrated approach is implemented via four interrelated and progressive basic steps,i.e.inference of the regional tectonic stress field direction,analyses of in situ stress characteristics and measurement reliability,regression-based in situ stress field analysis and reliability assessment,and modified in situ stress field analysis and reliability verification.The orientations and magnitudes of the3D in situ stress field can be analyzed and obtained at a strategic level following these four basic steps.First,the tectonic stress field direction around the cavern group is deduced in accordance with the regional tectonic framework and verified using a regional crustal deformation velocity map.Second,the reliability of the in situ stress measurements is verified based on the locations and depths of stressinduced brittle failures in small tunnels(such as exploratory tunnels and pilot tunnels) within the excavation range of the cavern group.Third,considering the influences of the valley topography and major geological structures,the 3D in situ stress field is regressed using numerical simulation and multiple linear regression techniques based on the in situ stress measurements.Finally,the regressed in situ stress field is further modified and reverified based on the stress-induced brittle failures of small tunnels and the initial excavation of the cavern group.A case study of the Shuangjiangkou underground cavern group demonstrates that the proposed approach is reliable for estimating the 3D in situ stress fields of large deep underground cavern groups near valleys,thus contributing to the optimization of practical excavation and design of mitigating the instability of the surrounding rock masses during step excavations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号