首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fractional step lattice Boltzmann scheme is presented to greatly improve the stability of the lattice Boltzmann method (LBM) in modelling incompressible flows at high Reynolds number. This method combines the good features of the conventional LBM and the fractional step technique. Through the fractional step, the flow at an extreme case of infinite Reynolds number (inviscid flow) can be effectively simulated. In addition, the non-slip boundary condition can be directly implemented.  相似文献   

2.
Numerical computations have been performed of various two-dimensional, elliptic flows at high Reynolds number with a view to assessing the relative merits of the widely used hybrid (i.e., upwind/central) interpolation and the recently proposed quadratic-upstream interpolation of Leonard, known as QUICK. The latter scheme possesses less intrinsic stability than hybrid differencing. By selectively evaluating some of the convective elements at a previous iteration level, however, satisfactorily rapid convergence has been obtained. It is concluded from the flows tested that the extra computational effort per node required for QUICK over the hybrid difference scheme is more than repaid by the greater numerical accuracy that results.  相似文献   

3.
Zhu  Jiang  Wang  Lizan  Xie  Guoqi  Pei  Tingrui  Oh  Sangyoon  Li  Zhetao 《The Journal of supercomputing》2021,77(4):3450-3483
The Journal of Supercomputing - With a large number of heterogeneous processors are deployed on service-oriented cloud computing systems, the issue of processor random hardware failure is becoming...  相似文献   

4.
Impressive advances in parallel platform architectures over the past decade have made Direct Numerical Simulation (DNS) a powerful tool which can provide full access to the spatial structure of turbulent flows with complex geometries. An innovative approach which combines high-order schemes and a dual domain decomposition method is presented in this paper and is applied to DNS of multiscale-generated turbulent flows by a fractal grid. These DNS illustrate the applicability of our approach to the simulation of complex turbulent flows and provide results which are compared with recent laboratory experiments thus providing new insights for the interpretation of the experimental measurements.  相似文献   

5.
Cloud computing promises an open environment where customers can deploy IT services in pay-as-you-go fashion while saving huge capital investment in their own IT infrastructure. Due to the openness, various malicious service providers can exist. Such service providers may record service requests from a customer and then collectively deduce the customer private information. Therefore, customers need to take certain actions to protect their privacy. Obfuscation with noise injection, that mixes noise service requests with real customer service requests so that service providers will be confused about which requests are real ones, is an effective approach in this regard if those request occurrence probabilities are about the same. However, current obfuscation with noise injection uses random noise requests. Due to the randomness it needs a large number of noise requests to hide the real ones so that all of their occurrence probabilities are about the same, i.e. service providers would be confused. In pay-as-you-go cloud environment, a noise request will cost the same as a real request. Hence, with the same level of confusion, i.e. customer privacy protection, the number of noise requests should be kept as few as possible. Therefore in this paper we develop a novel historical probability based noise generation strategy. Our strategy generates noise requests based on their historical occurrence probability so that all requests including noise and real ones can reach about the same occurrence probability, and then service providers would not be able to distinguish in between. Our strategy can significantly reduce the number of noise requests over the random strategy, by more than 90% as demonstrated by simulation evaluation.  相似文献   

6.
A penalization method is applied to model the interaction of large Mach number compressible flows with obstacles. A supplementary term is added to the compressible Navier-Stokes system, seeking to simulate the effect of the Brinkman-penalization technique used in incompressible flow simulations including obstacles. We present a computational study comparing numerical results obtained with this method to theoretical results and to simulations with Fluent software. Our work indicates that this technique can be very promising in applications to complex flows.  相似文献   

7.
In recent years, High Performance Computing (HPC) systems have been shifting from expensive massively parallel architectures to clusters of commodity PCs to take advantage of cost and performance benefits. Fault tolerance in such systems is a growing concern for long-running applications. In this paper, we briefly review the failure rates of HPC systems and also survey the fault tolerance approaches for HPC systems and issues with these approaches. Rollback-recovery techniques which are most often used for long-running applications on HPC clusters are discussed because they are widely used for long-running applications on HPC systems. Specifically, the feature requirements of rollback-recovery are discussed and a taxonomy is developed for over twenty popular checkpoint/restart solutions. The intent of this paper is to aid researchers in the domain as well as to facilitate development of new checkpointing solutions.  相似文献   

8.
Effective task scheduling is essential for obtaining high performance in heterogeneous distributed computing systems (HeDCSs). However, finding an effective task schedule in HeDCSs requires the consideration of both the heterogeneity of processors and high interprocessor communication overhead, which results from non-trivial data movement between tasks scheduled on different processors. In this paper, we present a new high-performance scheduling algorithm, called the longest dynamic critical path (LDCP) algorithm, for HeDCSs with a bounded number of processors. The LDCP algorithm is a list-based scheduling algorithm that uses a new attribute to efficiently select tasks for scheduling in HeDCSs. The efficient selection of tasks enables the LDCP algorithm to generate high-quality task schedules in a heterogeneous computing environment. The performance of the LDCP algorithm is compared to two of the best existing scheduling algorithms for HeDCSs: the HEFT and DLS algorithms. The comparison study shows that the LDCP algorithm outperforms the HEFT and DLS algorithms in terms of schedule length and speedup. Moreover, the improvement in performance obtained by the LDCP algorithm over the HEFT and DLS algorithms increases as the inter-task communication cost increases. Therefore, the LDCP algorithm provides a practical solution for scheduling parallel applications with high communication costs in HeDCSs.  相似文献   

9.
刘伟  陈振 《计算机应用研究》2021,38(9):2628-2634
结合边缘缓存技术与流媒体传输技术能有效提升视频服务质量,为降低视频内容提供商的边缘资源租赁成本,提出一种视频缓存、转码和传输联合优化策略.首先,综合考虑视频的缓存、转码、边缘传输和云端传输的成本,以最小总租赁成本为目标建立整数规划模型,并证明其NP-complete性质;其次,根据历史请求数估计视频流行度变化,并对流行视频进行缓存;最后,基于视频的缓存状态,为用户的请求选择成本最低的响应方式.仿真实验表明,所提策略与现有策略相比,可提升请求命中率并有效降低内容提供商的资源租赁成本.  相似文献   

10.
A FORTRAN 77 program is presented which calculates energy values, reaction matrix and corresponding radial wave functions in a coupled-channel approximation of the hyperspherical adiabatic approach. In this approach, a multi-dimensional Schrödinger equation is reduced to a system of the coupled second-order ordinary differential equations on the finite interval with homogeneous boundary conditions of the third type. The resulting system of radial equations which contains the potential matrix elements and first-derivative coupling terms is solved using high-order accuracy approximations of the finite-element method. As a test desk, the program is applied to the calculation of the energy values and reaction matrix for an exactly solvable 2D-model of three identical particles on a line with pair zero-range potentials.

Program summary

Program title: KANTBPCatalogue identifier: ADZH_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZH_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 4224No. of bytes in distributed program, including test data, etc.: 31 232Distribution format: tar.gzProgramming language: FORTRAN 77Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IVOperating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XPRAM: depends on (a) the number of differential equations; (b) the number and order of finite-elements; (c) the number of hyperradial points; and (d) the number of eigensolutions required. Test run requires 30 MBClassification: 2.1, 2.4External routines: GAULEG and GAUSSJ [W.H. Press, B.F. Flanery, S.A. Teukolsky, W.T. Vetterley, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986]Nature of problem: In the hyperspherical adiabatic approach [J. Macek, J. Phys. B 1 (1968) 831-843; U. Fano, Rep. Progr. Phys. 46 (1983) 97-165; C.D. Lin, Adv. Atom. Mol. Phys. 22 (1986) 77-142], a multi-dimensional Schrödinger equation for a two-electron system [A.G. Abrashkevich, D.G. Abrashkevich, M. Shapiro, Comput. Phys. Comm. 90 (1995) 311-339] or a hydrogen atom in magnetic field [M.G. Dimova, M.S. Kaschiev, S.I. Vinitsky, J. Phys. B 38 (2005) 2337-2352] is reduced by separating the radial coordinate ρ from the angular variables to a system of second-order ordinary differential equations which contain potential matrix elements and first-derivative coupling terms. The purpose of this paper is to present the finite-element method procedure based on the use of high-order accuracy approximations for calculating approximate eigensolutions for such systems of coupled differential equations.Solution method: The boundary problems for coupled differential equations are solved by the finite-element method using high-order accuracy approximations [A.G. Abrashkevich, D.G. Abrashkevich, M.S. Kaschiev, I.V. Puzynin, Comput. Phys. Comm. 85 (1995) 40-64]. The generalized algebraic eigenvalue problem AF=EBF with respect to pair unknowns (E,F) arising after the replacement of the differential problem by the finite-element approximation is solved by the subspace iteration method using the SSPACE program [K.J. Bathe, Finite Element Procedures in Engineering Analysis, Englewood Cliffs, Prentice-Hall, New York, 1982]. The generalized algebraic eigenvalue problem (AEB)F=λDF with respect to pair unknowns (λ,F) arising after the corresponding replacement of the scattering boundary problem in open channels at fixed energy value, E, is solved by the LDLT factorization of symmetric matrix and back-substitution methods using the DECOMP and REDBAK programs, respectively [K.J. Bathe, Finite Element Procedures in Engineering Analysis, Englewood Cliffs, Prentice-Hall, New York, 1982]. As a test desk, the program is applied to the calculation of the energy values and reaction matrix for an exactly solvable 2D-model of three identical particles on a line with pair zero-range potentials described in [Yu. A. Kuperin, P.B. Kurasov, Yu.B. Melnikov, S.P. Merkuriev, Ann. Phys. 205 (1991) 330-361; O. Chuluunbaatar, A.A. Gusev, S.Y. Larsen, S.I. Vinitsky, J. Phys. A 35 (2002) L513-L525; N.P. Mehta, J.R. Shepard, Phys. Rev. A 72 (2005) 032728-1-11; O. Chuluunbaatar, A.A. Gusev, M.S. Kaschiev, V.A. Kaschieva, A. Amaya-Tapia, S.Y. Larsen, S.I. Vinitsky, J. Phys. B 39 (2006) 243-269]. For this benchmark model the needed analytical expressions for the potential matrix elements and first-derivative coupling terms, their asymptotics and asymptotics of radial solutions of the boundary problems for coupled differential equations have been produced with help of a MAPLE computer algebra system.Restrictions: The computer memory requirements depend on:
(a) the number of differential equations;
(b) the number and order of finite-elements;
(c) the total number of hyperradial points; and
(d) the number of eigensolutions required.
Restrictions due to dimension sizes may be easily alleviated by altering PARAMETER statements (see Long Write-Up and listing for details). The user must also supply subroutine POTCAL for evaluating potential matrix elements. The user should supply subroutines ASYMEV (when solving the eigenvalue problem) or ASYMSC (when solving the scattering problem) that evaluate the asymptotics of the radial wave functions at the right boundary point in case of a boundary condition of the third type, respectively.Running time: The running time depends critically upon:
(a) the number of differential equations;
(b) the number and order of finite-elements;
(c) the total number of hyperradial points on interval [0,ρmax]; and
(d) the number of eigensolutions required.
The test run which accompanies this paper took 28.48 s without calculation of matrix potentials on the Intel Pentium IV 2.4 GHz.  相似文献   

11.
12.
Breakthrough advances in microprocessor technology and efficient power management have altered the course of development of processors with the emergence of multi-core processor technology, in order to bring higher level of processing. The utilization of many-core technology has boosted computing power provided by cluster of workstations or SMPs, providing large computational power at an affordable cost using solely commodity components. Different implementations of message-passing libraries and system softwares (including Operating Systems) are installed in such cluster and multi-cluster computing systems. In order to guarantee correct execution of message-passing parallel applications in a computing environment other than that originally the parallel application was developed, review of the application code is needed. In this paper, a hybrid communication interfacing strategy is proposed, to execute a parallel application in a group of computing nodes belonging to different clusters or multi-clusters (computing systems may be running different operating systems and MPI implementations), interconnected with public or private IP addresses, and responding interchangeably to user execution requests. Experimental results demonstrate the feasibility of this proposed strategy and its effectiveness, through the execution of benchmarking parallel applications.  相似文献   

13.
A numerical study of natural convective flows, mainly for high Rayleigh numbers, in a sloped converging channel, for different inclination and convergence angles has been carried out, taking into account the lacks of the literature on some aspects of this configuration. Two-dimensional, laminar, transitional and turbulent simulations were obtained by solving the fully elliptic governing equations using two different general-purpose codes: Fluent and Phoenics. The low-Reynolds k-ω turbulence model has been employed. Special emphasis is made on the systematic comparisons of computational results with experimental and numerical data taken from literature for turbulent regime, so as on the transitional conditions, studying the influence of Rayleigh number and channel aspect ratio. A generalized turbulent correlation for the average Nusselt number has been obtained from numerical results in a channel with isothermal heated plates, for symmetric heating conditions. This correlation is valid for wide and not yet covered ranges of Rayleigh number (based on length of the channel) varying from 1010 to 1016, aspect ratio between 0.03 and 0.25, the converging angle from 1° to 30° and sloping angle from 0° to 60°. Finally, an application of this numerical correlation in two experimental prototypes is presented.  相似文献   

14.
15.
An overview of a comprehensive framework is given for estimating the predictive uncertainty of scientific computing applications. The framework is comprehensive in the sense that it treats both types of uncertainty (aleatory and epistemic), incorporates uncertainty due to the mathematical form of the model, and it provides a procedure for including estimates of numerical error in the predictive uncertainty. Aleatory (random) uncertainties in model inputs are treated as random variables, while epistemic (lack of knowledge) uncertainties are treated as intervals with no assumed probability distributions. Approaches for propagating both types of uncertainties through the model to the system response quantities of interest are briefly discussed. Numerical approximation errors (due to discretization, iteration, and computer round off) are estimated using verification techniques, and the conversion of these errors into epistemic uncertainties is discussed. Model form uncertainty is quantified using (a) model validation procedures, i.e., statistical comparisons of model predictions to available experimental data, and (b) extrapolation of this uncertainty structure to points in the application domain where experimental data do not exist. Finally, methods for conveying the total predictive uncertainty to decision makers are presented. The different steps in the predictive uncertainty framework are illustrated using a simple example in computational fluid dynamics applied to a hypersonic wind tunnel.  相似文献   

16.
The first hurdle for carrying out research on cloud computing is the development of a suitable research platform. While cloud computing is primarily commercially-driven and commercial clouds are naturally realistic as research platforms, they do not provide to the scientist enough control for dependable experiments. On the other hand, research carried out using simulation, mathematical modelling or small prototypes may not necessarily be applicable in real clouds of larger scale. Previous surveys on cloud performance and energy-efficiency have focused on the technical mechanisms proposed to address these issues. Researchers of various disciplines and expertise can use them to identify areas where they can contribute with innovative technical solutions. This paper is meant to be complementary to these surveys. By providing the landscape of research platforms for cloud systems, our aim is to help researchers identify a suitable approach for modelling, simulation or prototype implementation on which they can develop and evaluate their technical solutions.  相似文献   

17.
18.
In the field of information systems (IS) there is an observable trend towards the use of multi-method research. Using different research methods allows for the cross-validation of data obtained via multiple approaches, with the potential to increase the robustness of research results. Such a multi-method approach is applicable to a comprehensive research agenda on critical success factors, an agenda that needs to take into account not only the identification, but also the analysis and management of critical success factors. The goal of this article is to contribute new knowledge on how to carry out research on critical success factors in IS projects using a multi-method approach. For this purpose, two research projects are presented, each a variation of the research design customized to particular circumstances. First, there is an outline of the research approach taken for a critical success factor research project in the field of portal implementation, with discussion of the strengths and weaknesses of the project. Taking into consideration these experiences, the research approach of a similar critical success factor research project in the field of offshore software development is then described. Finally, recommendations for using the multi-method research approach in critical success factor research are presented.  相似文献   

19.
A FORTRAN 77 program for calculating energy values, reaction matrix and corresponding radial wave functions in a coupled-channel approximation of the hyperspherical adiabatic approach is presented. In this approach, a multi-dimensional Schrödinger equation is reduced to a system of the coupled second-order ordinary differential equations on a finite interval with homogeneous boundary conditions: (i) the Dirichlet, Neumann and third type at the left and right boundary points for continuous spectrum problem, (ii) the Dirichlet and Neumann type conditions at left boundary point and Dirichlet, Neumann and third type at the right boundary point for the discrete spectrum problem. The resulting system of radial equations containing the potential matrix elements and first-derivative coupling terms is solved using high-order accuracy approximations of the finite element method. As a test desk, the program is applied to the calculation of the reaction matrix and radial wave functions for 3D-model of a hydrogen-like atom in a homogeneous magnetic field. This version extends the previous version 1.0 of the KANTBP program [O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I. Vinitsky, Comput. Phys. Commun. 177 (2007) 649-675].

Program summary

Program title: KANTBPCatalogue identifier: ADZH_v2_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZH_v2_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 20 403No. of bytes in distributed program, including test data, etc.: 147 563Distribution format: tar.gzProgramming language: FORTRAN 77Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IVOperating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XPRAM: This depends on
1.
the number of differential equations;
2.
the number and order of finite elements;
3.
the number of hyperradial points; and
4.
the number of eigensolutions required.
The test run requires 2 MBClassification: 2.1, 2.4External routines: GAULEG and GAUSSJ [2]Nature of problem: In the hyperspherical adiabatic approach [3-5], a multidimensional Schrödinger equation for a two-electron system [6] or a hydrogen atom in magnetic field [7-9] is reduced by separating radial coordinate ρ from the angular variables to a system of the second-order ordinary differential equations containing the potential matrix elements and first-derivative coupling terms. The purpose of this paper is to present the finite element method procedure based on the use of high-order accuracy approximations for calculating approximate eigensolutions of the continuum spectrum for such systems of coupled differential equations on finite intervals of the radial variable ρ∈[ρmin,ρmax]. This approach can be used in the calculations of effects of electron screening on low-energy fusion cross sections [10-12].Solution method: The boundary problems for the coupled second-order differential equations are solved by the finite element method using high-order accuracy approximations [13]. The generalized algebraic eigenvalue problem AF=EBF with respect to pair unknowns (E,F) arising after the replacement of the differential problem by the finite-element approximation is solved by the subspace iteration method using the SSPACE program [14]. The generalized algebraic eigenvalue problem (AEB)F=λDF with respect to pair unknowns (λ,F) arising after the corresponding replacement of the scattering boundary problem in open channels at fixed energy value, E, is solved by the LDLT factorization of symmetric matrix and back-substitution methods using the DECOMP and REDBAK programs, respectively [14]. As a test desk, the program is applied to the calculation of the reaction matrix and corresponding radial wave functions for 3D-model of a hydrogen-like atom in a homogeneous magnetic field described in [9] on finite intervals of the radial variable ρ∈[ρmin,ρmax]. For this benchmark model the required analytical expressions for asymptotics of the potential matrix elements and first-derivative coupling terms, and also asymptotics of radial solutions of the boundary problems for coupled differential equations have been produced with help of a MAPLE computer algebra system.Restrictions: The computer memory requirements depend on:
1.
the number of differential equations;
2.
the number and order of finite elements;
3.
the total number of hyperradial points; and
4.
the number of eigensolutions required.
Restrictions due to dimension sizes may be easily alleviated by altering PARAMETER statements (see Section 3 and [1] for details). The user must also supply subroutine POTCAL for evaluating potential matrix elements. The user should also supply subroutines ASYMEV (when solving the eigenvalue problem) or ASYMS0 and ASYMSC (when solving the scattering problem) which evaluate asymptotics of the radial wave functions at left and right boundary points in case of a boundary condition of the third type for the above problems.Running time: The running time depends critically upon:
1.
the number of differential equations;
2.
the number and order of finite elements;
3.
the total number of hyperradial points on interval [ρmin,ρmax]; and
4.
the number of eigensolutions required.
The test run which accompanies this paper took 2 s without calculation of matrix potentials on the Intel Pentium IV 2.4 GHz.References:[1] O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I. Vinitsky, Comput. Phys. Commun. 177 (2007) 649-675; http://cpc.cs.qub.ac.uk/summaries/ADZHv10.html.[2] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986.[3] J. Macek, J. Phys. B 1 (1968) 831-843.[4] U. Fano, Rep. Progr. Phys. 46 (1983) 97-165.[5] C.D. Lin, Adv. Atom. Mol. Phys. 22 (1986) 77-142.[6] A.G. Abrashkevich, D.G. Abrashkevich, M. Shapiro, Comput. Phys. Commun. 90 (1995) 311-339.[7] M.G. Dimova, M.S. Kaschiev, S.I. Vinitsky, J. Phys. B 38 (2005) 2337-2352.[8] O. Chuluunbaatar, A.A. Gusev, V.L. Derbov, M.S. Kaschiev, L.A. Melnikov, V.V. Serov, S.I. Vinitsky, J. Phys. A 40 (2007) 11485-11524.[9] O. Chuluunbaatar, A.A. Gusev, V.P. Gerdt, V.A. Rostovtsev, S.I. Vinitsky, A.G. Abrashkevich, M.S. Kaschiev, V.V. Serov, Comput. Phys. Commun. 178 (2007) 301 330; http://cpc.cs.qub.ac.uk/summaries/AEAAv10.html.[10] H.J. Assenbaum, K. Langanke, C. Rolfs, Z. Phys. A 327 (1987) 461-468.[11] V. Melezhik, Nucl. Phys. A 550 (1992) 223-234.[12] L. Bracci, G. Fiorentini, V.S. Melezhik, G. Mezzorani, P. Pasini, Phys. Lett. A 153 (1991) 456-460.[13] A.G. Abrashkevich, D.G. Abrashkevich, M.S. Kaschiev, I.V. Puzynin, Comput. Phys. Commun. 85 (1995) 40-64.[14] K.J. Bathe, Finite Element Procedures in Engineering Analysis, Englewood Cliffs, Prentice-Hall, New York, 1982.  相似文献   

20.
This study focuses on GIS-based integration of traditional remote sensing data (Landsat TM), geophysical data from airborne measurements (gamma radiation, magnetic and VLF) and ancillary data for geological studies. The test area, Stockholm region, is complex with a fragmented distribution of different land-cover types. Methods for estimation and correction of the influence of this on the measured gamma radiation are discussed. Image processing methods are tested on the geophysical data with the aim to increase the possibilities to extract useful geological information. An integrated analysis of the different data types is applied to find the mutual relationship as a base for a geological analysis. The ultimate application of these techniques should result in a more detailed and accurate geological interpretation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号