首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The replacement of environmentally damaging synthetic refrigerants due to their ODP or GWI potential by natural refrigerants such as CO2 is now up in the research agenda. Moreover, current energy supply concerns make of efficiency another first priority issue to dictate new stringent design criteria for industrial and commercial equipment. Heat exchangers are the most important components in refrigeration systems where they are used as evaporators or condensers and their design and operation have a considerable impact on overall system performance. Hence, it is important to better understand their thermal and hydrodynamic behaviour in order to improve their design and operation. Numerical simulation represents a very efficient tool for achieving this objective. In this paper, a new modeling approach, accounting for the heat transfer the hydrodynamics of the problem and intended to predict the dynamic behaviour of a refrigeration coil under dry conditions is proposed. A related FORTRAN program was developed, allowing the study of a large range of complex refrigerant circuit configurations. The equations describing these aspects are strongly coupled, and their decoupling is reached by using an original method of resolution. Circuits may have several inlets, outlets, bifurcations and feed one or several other tubes inlets. The coil was subdivided into several elementary control volumes and its analysis provided detailed information in X, Y and Z directions. Validation was performed with data from a CO2 secondary refrigeration loop test bench built in CanmetENERGY Laboratories. These data were predicted satisfactorily over the operating range corresponding to refrigeration applications. Exemplary simulations were then performed on an evaporator typically employed in supermarkets, showing the effect of circuiting on operation and performance. Even though circuiting is common practice in refrigeration this simulation shows that care must be exercised in making the selection. A two-circuit configuration was chosen for analysis in this investigation. In terms of capacity and heat transfer, it was shown that the two circuits were well balanced in terms of pressure drop and heat transfer capacity. Low CO2 pressure drop resulted in reduced temperature glide as compared to a single circuit.  相似文献   

2.
Heat exchangers are major components in refrigeration systems where they are used as evaporators or condensers. Better understanding their thermal and hydrodynamic behaviour is therefore important, in order to improve their design and maximize their performance. In this paper, a new model simultaneously accounting for the thermal and hydrodynamic behaviour of fin and tube heat exchangers working under conditions of no condensation of air moisture (dry case), is presented. The equations describing these aspects are strongly coupled, and their decoupling is reached by using an original method of resolution. A FORTRAN program based on this procedure was developed and allowed to study a large range of complex refrigerant circuit configurations. Each circuit may have several inlets, outlets and bifurcations and feed one or several other tubes inlets. The coil was subdivided into several elementary control volumes and was analysed in order to obtain detailed information in X, Y and Z directions. The model was validated using data from a CO2 secondary refrigeration loop test bench built in CanmetENERGY Laboratories. These data were predicted satisfactorily over the operating range corresponding to refrigeration applications. The model was then applied to study an evaporator typically employed in supermarkets. Circuiting, even though common practice in refrigeration coils must be well designed if it is to impact positively on operation and performance. Therefore, two circuit configurations for CO2 were selected for analysis in this investigation. In terms of capacity and heat transfer, it was shown that the two circuits were well balanced. Low CO2 pressure drop resulted in reduced temperature glide. This is a remarkable advantage for CO2 when used as a refrigerant.  相似文献   

3.
A segmented approach [1] for the CO2 helical‐coil‐in‐fluted‐tube gas cooler is developed. The CO2 helical‐coil‐in‐fluted‐tube gas cooler consists of helically coiled tube and fluted tube. It is fabricated by twisting a straight copper tube to form helically coiled tube and embedded in the groove of the fluted tube. The available heat transfer and pressure drop correlations for the supercritical CO2‐side and water‐side are provided to simulate the gas cooler. The simulation is compared with a detailed set of experimental data, for given the inlet conditions. The predicted data matches well with the experimental data with absolute average deviations of 1.15, 4.6 and 4.7% for the CO2 pressure drop, gas cooler exit temperature and hot water temperature, respectively. Based on the good matches between measured data and predicted data, the detailed thermodynamic processes of gas cooler parameters are predicted and analyzed. Furthermore, different arrangements of the gas cooler within the original package dimensions are simulated and better performance of the gas cooler is obtained under the structural parameters of the 3‐row fluted tube with the inner diameter 12 mm. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
An investigation on flow boiling heat transfer and pressure drop of HFC-134a inside a vertical helically coiled concentric tube-in-tube heat exchanger has been experimentally carried out. The test section is a six-turn helically coiled tube with 5.786-m length, in which refrigerant HFC-134a flowing inside the inner tube is heated by the water flowing in the annulus. The diameter and the pitch of the coil are 305 mm and 45 mm, respectively. The outer diameter of the inner tube and its thickness are respectively 9.52 and 0.62 mm. The inner diameter of the outer tube is 29 mm. The average vapor qualities in test section were varied from 0.1 to 0.8. The tests were conducted with three different mass velocities of 112, 132, and 152 kg/m2-s. Analysis of obtained data showed that increasing of both the vapor qualities and the mass fluxes leads to higher heat transfer coefficients and pressure drops. Also, it was observed that the heat transfer coefficient is enhanced and also the pressure drop is increased when a helically coiled tube is used instead of a straight tube. Based on the present experimental results, a correlation was developed to predict the flow boiling heat transfer coefficient in vertical helically coiled tubes.  相似文献   

5.
This paper presents the results of simulations using a two-phase separated flow model to study the heat transfer and flow characteristics of refrigerants during evaporation in a horizontal tube. A one-dimensional annular flow model of the evaporation of refrigerants under constant heat flux is developed. The basic physical equations governing flow are established from the conservation of mass, energy and momentum. The model is validated by comparing it with the experimental data reported in literature. The present model can be used to predict the variation of the temperature, heat transfer coefficient and pressure drop of various pure refrigerants flowing along a horizontal tube. It is found that the refrigerant temperature decreases along the tube corresponding to the decreasing of its saturation pressure. The liquid heat transfer coefficient increases with the axial length due to the reducing thickness of the liquid film. The evaporation rate of liquid refrigerant tends to decrease with increasing axial length, due to the decreasing latent heat transfer through the liquid–vapor interface. The developed model can be considered as an effective tool for evaporator design and can be used to choose appropriate refrigerants under designed conditions.  相似文献   

6.
Experiments were carried out on the flow pattern, heat transfer, and pressure drop of flow boiling of pure CO2 and CO2‐oil mixtures in horizontal smooth and micro‐fin tubes. The smooth tube is a stainless steel tube with an inner diameter of 3.76 mm. The micro‐fin tube is a copper tube with a mean inner diameter of 3.75 mm. The experiments were carried out at mass velocities from 100 to 500 kg/(m2·s), saturation temperature of 10 °C, and the circulation ratio of lubricating oil (PAG) was from 0 to 1.0 mass%. Flow pattern observations mainly showed slug and wavy flow for the smooth tube, but annular flow for the micro‐fin tube. Compared with the flow patterns in the case of pure CO2, an increase in frequency of slug occurrence in the slug flow region, and a decrease in the quantity of liquid at the top of the tube in the annular flow region were observed in the case of CO2‐oil mixtures. With pure CO2, the flow boiling heat transfer was dominated by nucleate boiling in the low vapor quality region, and the heat transfer coefficients for the micro‐fin tube were higher than those of the smooth tube. With CO2‐oil mixtures, the flow boiling heat transfer was dominated by convective evaporation, especially in the high vapor quality region. In addition, the heat transfer coefficient decreased significantly when the oil circulation ratio was larger than 0.1 mass%. For the pressure drop characteristics, in the case of pure CO2, the homogeneous flow model agreed with the experimental results within ±30% for the smooth tube. The pressure drops of the micro‐fin tube were 0–70% higher than those predicted with the homogeneous flow model, and the pressure drops increased for the high oil circulation ratio and high vapor quality conditions. The increases in the pressure drops were considered to be due to the increase in the thickness of the oil film and the decrease in the effective flow cross‐sectional area. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20287  相似文献   

7.
This paper presents an overview of the use of flow visualization in micro- and mini-channel geometries for the development of pressure drop and heat transfer models during condensation of refrigerants. Condensation flow mechanisms for round, square, and rectangular tubes with hydraulic diameters in the range of 1–5 mm for 0 < x < 1, and 150 kg/m2-s and 750 kg/m2-s were recorded using unique experimental techniques that permit flow visualization during the condensation process. The effect of channel shape and miniaturization on the flow regime transitions was documented. The flow mechanisms were categorized into four different flow regimes: intermittent flow, wavy flow, annular flow, and dispersed flow. These flow regimes were further subdivided into several flow patterns within each regime. It was observed that the intermittent and annular flow regimes become larger as the tube hydraulic diameter is decreased, and at the expense of the wavy flow regime. These maps and transition lines can be used to predict the flow regime or pattern that will be established for a given mass flux, quality, and tube geometry. These observed flow mechanisms, together with pressure drop measurements, are being used to develop experimentally validated models for pressure drop during condensation in each of these flow regimes for a variety of circular and noncircular channels with 0.4 < Dh < 5 mm. These flow regime-based models yield substantially better pressure drop predictions than the traditionally used correlations that are primarily based on air-water flows for large diameter tubes. Condensation heat transfer coefficients were also measured using a unique thermal amplification technique that simultaneously allows for the accurate measurement of the low heat transfer rates over small increments of refrigerant quality and high heat transfer coefficients characteristic of microchannels. Models for these measured heat transfer coefficients are being developed using the documented flow mechanisms and the corresponding pressure drop models as the basis.  相似文献   

8.
Shell and tube heat exchanger with single twisted tube bundle in five different twist angles, are studied using computational fluid dynamics (CFD) and compared to the conventional shell and tube heat exchanger with single segmental baffles. Effect of shell-side nozzles configurations on heat exchanger performance is studied as well. Heat transfer rate and pressure drop are the main issues investigated in the paper. The results show that, for the same shell-side flow rate, the heat transfer coefficient of heat exchanger with twisted tube bundle is lower than that of the heat exchanger with segmental baffles while shell-side pressure drop of the former is even much lower than that of the latter. The comparison of heat transfer rate per unit pressure drop versus shell-side mass flow rate shows that heat exchanger with twisted tube bundle in both cases of perpendicular and tangential shell-side nozzles, has significant performance advantages over the segmental baffled heat exchanger. Optimum bundle twist angles for such exchangers are found to be 65 and 55° for all shell side flow rates.  相似文献   

9.
In this paper, flow patterns and their transitions for refrigerant R134a boiling in a microfinned helically coiled tube are experimentally observed and analyzed. All the flow patterns occurred in the test can be divided into three dominant regimes, i.e., stratified-wavy flow, intermittent flow and annular flow. Experimental data are plotted in two kinds of flow maps, i.e., Taitel and Dukler flow map and mass flux versus vapor quality flow map. The transitions between various flow regimes and the differences from that in smooth straight tube have also been discussed. Martinelli parameter can be used to indicate the transition from intermittent flow to annular flow. The transition from stratified-wavy flow to annular or intermittent flow is identified in the vapor quality versus mass flux flow map. The flow regime is always in stratified-wavy flow for a mass flux less than 100 kg/m2 s.The two-phase frictional pressure drop characteristics in the test tube are also experimentally studied. The two-phase frictional multiplier data can be well correlated by Lockhart–Martinelli parameter. Considering the corresponding flow regimes, i.e., stratified and annular flow, two frictional pressure drop correlations are proposed, and show a good agreement with the respective experimental data.  相似文献   

10.
In this paper, an experimental study on the heat transfer characteristics of two-phase flow condensation and boiling of ternary non-azeotropic refrigerant mixtures, on water/refrigerant horizontal enhanced surface tubing, is presented. The enhanced surface tubing data showed a significant enhancement of the heat transfer compared to an equivalent smooth tube depending on the mixture components and their concentrations. Correlations were proposed to predict the heat transfer characteristics such as average heat transfer coefficients, as well as pressure drops of ternary non-azeotropic refrigerant mixture flow condensation, and boiling inside enhanced surface tubing. In addition, it was found that the refrigerant mixture's pressure drop is a weak function of the mixture's composition.  相似文献   

11.
《Applied Thermal Engineering》2007,27(14-15):2618-2625
To properly determine the oil charge to the compressor of a closed-loop vapor compression system, it is important to be able to accurately estimate how much oil is held-up in refrigeration cycle components other than the compressor. To provide such information, this paper reports the results of an experimental investigation of the oil distribution behavior in a specific transcritical CO2 air-conditioning system. To experimentally measure the oil retention at each individual cycle component, a novel oil injection–extraction method was applied and a new test facility was developed. Experimental results show that as the oil concentration of the working fluids discharged from the compressor increases the oil retention volume in the heat exchangers and suction line also increases. Thirty-two percent and 24% of the total oil amount charged initially is retained in heat exchangers and suction line at 5 wt.% of oil circulating with the refrigerant at a mass flow rate of 14 and 27 g/s, respectively. Experimental results also show that the effect of the oil on the evaporator pressure drop increases as the oil concentration increases at constant refrigerant mass flow rate. For the refrigerant mass flow rate of 14 g/s and 27 g/s, the evaporator pressure drop increases up to 280% and 40%, respectively, when the oil concentration increases from 0 to 5 wt.% The effect of oil on pressure drop was found to be most profound at high vapor qualities where the local oil concentration is the highest. For a CO2 air-conditioning system, the oil retention in gas cooler, evaporator, and suction line is expected to be less than 20% of the initial oil charge if the oil concentration is maintained less than 1 wt.%.  相似文献   

12.
The two-phase heat transfer coefficient and pressure drop of pure HFC-134a condensing inside a smooth helically coiled concentric tube-in-tube heat exchanger are experimentally investigated. The test section is a 5.786 m long helically coiled double tube with refrigerant flowing in the inner tube and cooling water flowing in the annulus. The inner tube is made from smooth copper tubing of 9.52 mm outer diameter and 8.3 mm inner diameter. The outer tube is made from smooth copper tubing of 23.2 mm outer diameter and 21.2 mm inner diameter. The heat exchanger is fabricated by bending a straight copper double-concentric tube into a helical coil of six turns. The diameter of coil is 305 mm. The pitch of coil is 35 mm. The test runs are done at average saturation condensing temperatures ranging between 40 and 50 °C. The mass fluxes are between 400 and 800 kg m−2 s−1 and the heat fluxes are between 5 and 10 kW m−2. The pressure drop across the test section is directly measured by a differential pressure transducer. The quality of the refrigerant in the test section is calculated using the temperature and pressure obtained from the experiment. The average heat transfer coefficient of the refrigerant is determined by applying an energy balance based on the energy rejected from the test section. The effects of heat flux, mass flux and, condensation temperature on the heat transfer coefficients and pressure drop are also discussed. It is found that the percentage increase of the average heat transfer coefficient and the pressure drop of the helically coiled concentric tube-in-tube heat exchanger, compared with that of the straight tube-in-tube heat exchanger, are in the range of 33–53% and 29–46%, respectively. New correlations for the condensation heat transfer coefficient and pressure drop are proposed for practical applications.  相似文献   

13.
The two-phase heat transfer coefficient and pressure drop of HFC-134a during evaporation inside a smooth helically coiled concentric tube-in-tube heat exchanger are experimentally investigated. The test section is a 5.786-m long helically coiled tube with refrigerant flowing in the inner tube and heating water flowing in the annulus. The inner tube is made from copper tubing of 9.52 mm outer diameter and 7.2 mm inner diameter. The heat exchanger is fabricated by bending a straight copper tube into a spiral coil. The diameter of coil is 305 mm. The test run are done at average saturated evaporating temperatures ranging between 10 and 20 °C. The mass fluxes are between 400 and 800 kg m−2 s−1 and the heat fluxes are between 5 and 10 kW m−2. The inlet quality of the refrigerant in the test section is calculated using the temperature and pressure obtained from the experiment. The pressure drop across the test section is directly measured by a differential pressure transducer. The effects of heat flux, mass flux and, evaporation temperature on the heat transfer coefficients and pressure drop are also discussed. The results from the present experiment are compared with those obtained from the straight tube reported in the literature. New correlations for the convection heat transfer coefficient and pressure drop are proposed for practical applications.  相似文献   

14.
The paper presents an experimental study of flow boiling heat transfer characteristics of refrigerant mixture R22/R114 in the annuli of a horizontal enhanced surface tubing evaporator. The test section had an inner tube bore diameter of 17.3 mm, an envelope diameter of 28.6 mm and an outer smooth tube of 32.3 mm internal diameter. The ranges of heat flux and mass velocity covered in the tests were 5–25 kW/m2 and 180–290 kg/m2/s, respectively, at a pressure of 570 kPa. The enhanced surface tubing data shows a significant enhancement of the heat transfer compared with an equivalent smooth tube depending on the mixture components and their concentrations. Correlations are proposed to predict such heat transfer characteristics as the average heat transfer coefficients as well as pressure drops of R22/R114 nonazeotropic refrigerant mixture flow boiling inside enhanced surface tubing. In addition, it was found that the refrigerant mixture's pressure drop is a weak function of the mixture composition.  相似文献   

15.
基于现有测试平台对管内液相流动换热压降进行研究,通过调节工质泵转速、水箱温度等实现对工质流量、饱和压力的调节,调节预热段、蒸发段电加热功率,实现对实验管进、出口工质状态的控制,进而为实验提供可靠、稳定的运行环境;数据分析中,对管内工质摩擦压降、局部压降进行综合考虑,对测压工装进行特别设计,以提高压降测量精度。实验结果显示:管内总压降和局部压降随着质量流量的增加而增大,其中局部压降在总压降中占比约为7.8%~9.1%,各公式对摩擦压降的预测误差波动范围为1.03%~1.79%,且当质量流量<75 kg/h时,各公式预测误差小于10%,在一定程度上说明了实验数据的精确性。此外,袁恩熙公式在四个预测公式中预测精度最高。  相似文献   

16.
An experimental study was performed to investigate the increment of the pressure drop during condensation of R-134 a vapor inside a horizontal tube with different coiled wire inserts. A double-pipe counter-flow heat exchanger of 1040-mm length was used as the test condenser while, the refrigerant flowed inside the inner tube and the coolant flowed in the annulus. Four coiled wires of 10.0-mm pitch and different diameters of 0.5, 0.7, 1.0 and 1.5-mm and also four springs of 1.0-mm diameter and different pitches of 5, 8, 10 and 13-mm were inserted on the refrigerant side of the test condenser. Data were recorded for different mass flow rates in plain tube and each coiled wire inserted tube. Investigating the results for the coiled wire inserted tubes revealed that inserting the springs increased the pressure drop in a range of 260 to 1600% in comparison with that for a plain tube. Also, influence of coiled wire geometry on the pressure drop was investigated. Based on the collected data, an empirical correlation was developed to predict the pressure drop during the condensation inside a horizontal tube in the presence of a spring insert. Finally, the performance evaluation of the coiled wire inserted condensers was done.  相似文献   

17.
A numerical model of air-cooled condenser coils is proposed to investigate the coil performance. In this model, the properties of refrigerant and air, as well as six exergy destruction components associated with different sources of irreversibility are computed locally along the coil based on numerous control volumes. The governing equations for a control volume are presented together with a computer simulation procedure to link all the control volumes together for a coil. Using this model, the coil characteristics in heat transfer, fluid flow and exergy destruction are analyzed with an emphasis on the refrigerant circuitry investigation. The study shows that the thermal resistance of refrigerant side is comparable to that of air side and the coil performance can be improved by varying the refrigerant mass velocity along the flow path. Compared with a common coil, using a complex refrigerant circuitry that the refrigerant circuits are properly branched or joined may reduce the heat transfer area by approximately 5% in coil design. This study also shows that the quantitative analysis on the exergy destruction components gives a clear picture in the coil performance evaluation. The results show that the criterion of exergy destruction ratio conforms well to that of coil heat flux in coil performance evaluation under the specified conditions.  相似文献   

18.
An updated flow pattern map was developed for CO2 on the basis of the previous Cheng–Ribatski–Wojtan–Thome CO2 flow pattern map [1], [2] to extend the flow pattern map to a wider range of conditions. A new annular flow to dryout transition (A–D) and a new dryout to mist flow transition (D–M) were proposed here. In addition, a bubbly flow region which generally occurs at high mass velocities and low vapor qualities was added to the updated flow pattern map. The updated flow pattern map is applicable to a much wider range of conditions: tube diameters from 0.6 to 10 mm, mass velocities from 50 to 1500 kg/m2 s, heat fluxes from 1.8 to 46 kW/m2 and saturation temperatures from ?28 to +25 °C (reduced pressures from 0.21 to 0.87). The updated flow pattern map was compared to independent experimental data of flow patterns for CO2 in the literature and it predicts the flow patterns well. Then, a database of CO2 two-phase flow pressure drop results from the literature was set up and the database was compared to the leading empirical pressure drop models: the correlations by Chisholm [3], Friedel [4], Grönnerud [5] and Müller-Steinhagen and Heck [6], a modified Chisholm correlation by Yoon et al. [7] and the flow pattern based model of Moreno Quibén and Thome [8], [9], [10]. None of these models was able to predict the CO2 pressure drop data well. Therefore, a new flow pattern based phenomenological model of two-phase flow frictional pressure drop for CO2 was developed by modifying the model of Moreno Quibén and Thome using the updated flow pattern map in this study and it predicts the CO2 pressure drop database quite well overall.  相似文献   

19.
The boiling heat transfer of refrigerant R-134a flow in horizontal small-diameter tubes with inner diameter of 0.51, 1.12, and 3.1 mm was experimentally investigated. Local heat transfer coefficient and pressure drop were measured for a heat flux ranging from 5 to 39 kW/m2, mass flux from 150 to 450 kg/m2 s, evaporating temperature from 278.15 to 288.15 K, and inlet vapor quality from 0 to 0.2. Flow patterns were observed by using a high-speed video camera through a sight glass at the entrance of an evaporator. Results showed that with decreasing tube diameter, the local heat transfer coefficient starts decreasing at lower vapor quality. Although the effect of mass flux on the local heat transfer coefficient decreased with decreasing tube diameter, the effect of heat flux was strong in all three tubes. The measured pressure drop for the 3.1-mm-ID tube agreed well with that predicted by the Lockhart–Martinelli correlation, but when the inner tube diameter was 0.51 mm, the measured pressure drop agreed well with that predicted by the homogenous pressure drop model. With decreasing tube diameter, the flow inside a tube approached homogeneous flow. The contribution of forced convective evaporation to the boiling heat transfer decreases with decreasing the inner tube diameter.  相似文献   

20.
In this paper, an experimental study is presented to enhance our understanding of the capillary tube behaviour using some new alternative refrigerants to HCFC‐22. An experimental setup fully instrumented was used to gather the behaviour of three different capillary tube geometries with R‐410B, R‐407C, and R‐410A under various conditions; saturated, sub‐cooled and two‐phase. Experimental data showed that R‐410B has the highest pressure drop along the capillary tubes compared to the alternatives under question and also has the highest temperature drop along the capillary tube. The data also showed that R‐407C has similar capillary behaviour to that of R‐22. The results clearly demonstrated that the pressure drop is significantly influenced by the diameter of the capillary tube, the type of refrigerant and inlet conditions to the capillary tube. The data also showed that the capillary pressure drop decreases with the increase of the capillary diameter. There is clear evidence that the component concentration of the refrigerant mixture significantly affects the capillary tube behaviour and particularly the pressure drop along the capillary tube length. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号