首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flow pattern and heat transfer in a composite system containing a porous region has received considerable attention due to its importance in many engineering applications. In this study a thermal lattice Boltzmann model with nine velocities, D2Q9, is employed to investigate the fluid flow, heat transfer, and entropy generation inside a channel with a heat‐generating porous block. The effects of the porous block's length, porosity, and the Reynolds number, overflow pattern, heat transfer, and entropy generation were studied. The mentioned parameters have different effects on heat transfer and conjugate phenomena. By increasing the block length, Reynolds number, and porosity the dimensionless entropy generation will reduce. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21017  相似文献   

2.
Entransy is a new concept developed in recent years to measure the transport ability of heat at a temperature in conduction and convection. This paper develops the concept of entransy flux for thermal radiation in enclosures with opaque surfaces. The entransy balance equation and entransy dissipation function are derived. The minimum principle of radiative entransy loss is developed. The potentials and the heat fluxes distribution which meet the Stefan–Boltzmann’s law and the energy balance equation would make the radiative entransy loss minimum if the net heat flux of each surface or the thermal potentials of the surfaces are given. The extremum entransy dissipation principles (EEDP) for thermal radiation are developed. The minimum radiative entransy dissipation leads to the minimum average radiative thermal potential difference for prescribed total heat exchange and the maximum radiative entransy dissipation leads to the maximum heat exchange for prescribed average radiative thermal potential difference. The minimum and maximum principle can be concluded into the minimum thermal resistance principle (MTRP) for thermal radiation by defining the thermal resistance with the entransy dissipation. The EEDP or MTRP is proved to be reliable when they are used to optimize some radiative heat transfer problems, and a comparison is made between the minimum principle of entropy generation and the EEDP.  相似文献   

3.
The present work deals with the fluid flow simulation and thermal analysis of a two-dimensional heat recovery system using porous media. A basic high-temperature flow system is considered in which a high-temperature non-radiating gas flows through a random porous matrix. The porous medium, in addition to its convective heat exchange with the gas, may absorb, emit and scatter thermal radiation. It is desirable to have large amount of radiative heat flux from the porous segment in the upstream direction (towards the thermal system). The lattice Boltzmann method (LBM) is used to simulate fluid flow in the porous medium. The gas and solid phases are considered in non-local thermal equilibrium, and separate energy equations are applied to these phases. Convection, conduction and radiation heat transfers take place simultaneously in solid phase, but in the gas flow, heat transfer occurs by conduction and convection. In order to analyze the thermal characteristics of the heat recovery system, volume-averaged velocities through the porous matrix obtained by LBM are used in the gas energy equation and then the coupled energy equations for gas and porous medium are numerically solved using finite difference method. For computing of radiative heat flux in the porous medium, discrete ordinates method is used to solve the radiative transfer equation. Finally the effect of various parameters on the performance of porous heat recovery system is studied.  相似文献   

4.
A numerical model was used to investigate gas-phase entropy generation during transient methanol droplet combustion in a low-pressure, zero-gravity, air environment.A comprehensive formulation for the entropy generation in a multi-component reacting flow is derived. Stationary methanol droplet combustion in a low ambient temperature (300 K) and a nearly quiescent atmosphere was studied and the effect of surface tension on entropy generation is discussed. Results show that the average entropy generation rate over the droplet lifetime is higher for the case that neglects surface tension. Entropy generation during the combustion of methanol droplets moving in a high-temperature environment (1200 K), as seen in a typical spray combustion system, is also presented. Entropy generation due to chemical reaction increases and entropy generation due to heat and mass transfer decreases with an increase in initial Reynolds number over the range of initial Reynolds numbers (1–100) considered. Contributions due to heat transfer and chemical reaction to the total entropy generation are greater than the contribution due to mass transfer. Entropy generation due to coupling between heat and mass transfer is negligible. For moving droplets, the lifetime averaged entropy generation rate presents a minimum value at an initial Reynolds number of approximately 55.  相似文献   

5.
A critical factor in the design of combustion systems for optimum fuel economy and emission performance lies in adequately predicting thermodynamic irreversibilities associated with transport and chemical processes. The objective of this study is to map these irreversibilities in terms of entropy production for methane combustion. The numerical solution of the combustion process is conducted with the help of a Fluent 6.1.22 computer code, and the volumetric entropy production rate due to chemical reaction, viscous dissipation, and mass and heat transfer are calculated as post-processed quantities with the computed data of the reaction rates, fluid velocity, temperature and radiative intensity. This paper shows that radiative heat transfer, which is an important source of entropy production, cannot be omitted for combustion systems. The study is extended by conducting a parametric investigation to include the effects of wall emissivity, optical thickness, swirl number, and Boltzmann number on entropy production. Global entropy production rates decrease with the increase in swirl velocity, wall emissivity and optical thickness. Introducing swirling air into the combustion system and operations with the appropriate Boltzmann number reduces the irreversibility affected regions and improves energy utilization efficiency.  相似文献   

6.
A critical factor in the design of combustion systems for optimum fuel economy and emission performance lies in adequately predicting thermodynamic irreversibilities associated with transport and chemical processes. The objective of this study is to map these irreversibilities in terms of entropy production for methane combustion. The numerical solution of the combustion process is conducted with the help of a Fluent 6.1.22 computer code, and the volumetric entropy production rate due to chemical reaction, viscous dissipation, and mass and heat transfer are calculated as post-processed quantities with the computed data of the reaction rates, fluid velocity, temperature and radiative intensity. This paper shows that radiative heat transfer, which is an important source of entropy production, cannot be omitted for combustion systems. The study is extended by conducting a parametric investigation to include the effects of wall emissivity, optical thickness, swirl number, and Boltzmann number on entropy production. Global entropy production rates decrease with the increase in swirl velocity, wall emissivity and optical thickness. Introducing swirling air into the combustion system and operations with the appropriate Boltzmann number reduces the irreversibility affected regions and improves energy utilization efficiency.  相似文献   

7.
Converting solar energy efficiently into hydrogen is a promising way for renewable fuels technology. However, high-temperature heat transfer enhancement of solar thermochemical process is still a pertinent challenge for solar energy conversion into fuels. In this paper, high-temperature heat transfer enhancement accounting for radiation, conduction, and convection heat transfer in porous-medium reactor filled with application in hydrogen generation has been investigated. NiFe-Aluminate porous media is synthesized and used as solar radiant absorber and redox material. Experiments combined with numerical models are performed for analyzing thermal characteristics and chemical changes in solar receiver. The reacting medium is most heated by radiation heat transfer and higher temperature distribution is observed in the region exposed to high radiation heat flux. Heat distribution, O2 and H2 yield in the reacting medium are facilitated by convective reactive gas moving through the medium's pores. The temperature gradient caused by thermal transition at fluid-solid interface could be more decreased as much as the reaction chamber can store the transferred high-temperature heat flux. However, thermal losses due to radiation flux lost at the quartz glass are obviously inevitable.  相似文献   

8.
Entropy of radiation has been used to derive the laws of blackbody radiation and determine the maximum efficiency of solar energy conversion. Along with the advancement in thermophotovoltaic technologies and nanoscale heat radiation, there is an urgent need to determine the entropy flow and generation in radiative transfer between nonideal surfaces when multiple reflections are significant. This paper investigates entropy flow and generation when incoherent multiple reflections are included, without considering the effects of interference and photon tunneling. The concept of partial equilibrium is applied to interpret the monochromatic radiation temperature of thermal radiation, Tλ(λ, Ω), which is dependent on both wavelength λ and direction Ω. The entropy flux and generation can thus be evaluated for nonideal surfaces. It is shown that several approximate expressions found in the literature can result in significant errors in entropy analysis even for diffuse-gray surfaces. The present study advances the thermodynamics of nonequilibrium thermal radiation and will have a significant impact on the future development of thermophotovoltaic and other radiative energy conversion devices.  相似文献   

9.
This article deals with the solution of conduction–radiation heat transfer problem involving variable thermal conductivity and variable refractive index. The discrete transfer method has been used for the determination of radiative information for the energy equation that has been solved using the lattice Boltzmann method. Radiatively, medium is absorbing, emitting and scattering. To validate the formulation, transient conduction and radiation heat transfer in a planar participating medium has been considered. For constant thermal conductivity and constant and variable refractive indices, results have been compared with those available in the literature. Effects of conduction–radiation parameter and scattering albedo on temperature have been studied for variable thermal conductivity and constant and/or variable refractive index. Lattice Boltzmann method and the discrete transfer method have been found to successfully deal with the complexities introduced due to variable thermal conductivity and variable refractive index.  相似文献   

10.
在半透明均匀折射率介质内矢量辐射传输过程中辐射熵传递方程及其数值模拟方法的基础上,研究了偏振度对矢量辐射传输过程中辐射熵产的影响。均匀折射率介质内辐射光束的起偏和改偏通过相距阵实现。计算结果表明:由介质内吸收发射过程的不可逆性产生的光谱辐射熵产数随着偏振度增加而减小,而由介质散射过程的不可逆性产生的光谱辐射熵产数随着偏振度增加而增加;偏振度对介质内的光谱辐射熵强度的影响很大,若不考虑偏振,光谱辐射熵强度的相对误差最大可达到18.04%;在整个系统中,光谱辐射熵产数满足热力学第二定律。  相似文献   

11.
Thermodynamic analysis of a high-temperature confined turbulent gas-jet is presented in this paper. The numerical model is two dimensional, steady, and includes the effect of gravity in the governing equations. Computations are carried out with a commercial CFD code and the local exergy losses are determined as post processed quantities. The analysis takes into account the second law effects of viscous dissipation, heat conduction and convection, and radiative heat transfer. The study is extended by conducting a parametric investigation to determine the effects of Reynolds number, inlet fluid temperature, optical thickness, and Planck number on the exergy loss coefficient, which is defined as the total exergy destroyed per unit mechanical energy input. The results show that exergy loss trough radiation entropy production is higher than that due to heat conduction and convection when the inlet gas temperature is high. It has also been found that in contrast to the conventional head loss coefficient, the exergy loss coefficient increases with inlet gas temperature, optical thickness, and Planck number.  相似文献   

12.
We introduce a model that precisely accounts the flow of fluid of Casson nanofluid over a stretched surface with activation energy and analyze entropy generation. The model is an attempt to investigate heat transfer and entropy generation in the laminar boundary layer near a stagnation point. The modified Arrhenius function for activation energy is used. Here, the flow of the fluid is subjected to nonlinear thermal radiation, viscous disipation, binary chemical reaction, and external magnetic field. The coupled nonlinear system is further validated using the spectral lineralization method. The method is found to be accurate and convergent. The results show that the Reynolds number and Casson parameter have a significant effect in entropy generation.  相似文献   

13.
Taking nonequilibrium radiative heat transfer between two surfaces as an example, the nonequilibrium thermodynamics of radiation is studied and discussed. The formulas of entropy flow, entropy generation, exergy flux, and optimal temperature of absorbing surface for maximum exergy output are derived. The result is a contribution to the thermodynamic analysis and optimization of solar energy utilization and can be applied in more complex radiative heat transfer cases.  相似文献   

14.
Taking nonequilibrium radiative heat transfer between two surfaces as an example, the nonequilibrium thermodynamics of radiation is studied and discussed. The formulas of entropy flow, entropy generation, exergy flux, and optimal temperature of absorbing surface for maximum exergy output are derived. The result is a contribution to the thermodynamic analysis and optimization of solar energy utilization and can be applied in more complex radiative heat transfer cases.  相似文献   

15.
ABSTRACT

The present work investigates entropy production due to coupled natural convection/radiation heat transfer phenomenon in an inclined rectangular enclosure, isothermally heated from the bottom side and isothermally cooled from the other sides. The discrete-ordinate method is used in modeling the radiative transport equation while the statistical narrow band correlated-k model is adopted to deduce the radiative properties of the medium. The influence of pertinent parameters such as aspect ratio, inclination angle and walls emissivities on entropy generation is studied. It is found that the volumetric entropy generation is reduced when increasing the inclination angle of the enclosure. Moreover, it is shown that the minimum entropy production due to radiation heat transfer in participating media occurs at aspect ratio equal to unity.  相似文献   

16.
Confined swirling jet impingement onto an adiabatic wall   总被引:1,自引:0,他引:1  
Impinging swirling jets generate interesting flow fields and depending on the magnitude of the swirl velocity, circulation cells develop in the region close to the solid wall. Moreover, axial momentum of the jet is influenced by the magnitude of the swirl velocity. This, in turn, results in considerable entropy generation in the flow field. In the present study, confined swirling jet impingement onto an adiabatic wall is investigated. The flow and temperature fields are computed numerically for various flow configurations. Different jet exit velocity profiles are considered and their effects on the flow field are examined. The entropy production due to different flow configurations is computed and the irreversibility ratios due to fluid friction and heat transfer are determined. It is found that the jet axis tilts towards the radial direction as swirl velocity increases and reducing the velocity profile number enhances the entropy generation due to heat transfer. The irreversibility ratio variation with the velocity profile number behaves opposite for the fluid friction and heat transfer.  相似文献   

17.
In the present study, flow and forced convective heat transfer in an air heater conduit filled with a porous matrix with a uniform constant solar heat flux has been investigated analytically, based on minimal entropy generation principle. While trying to decrease entropy generation due to heat transfer, pressure loss entropy generation increases, which indicates that an optimal porosity value exists. The influence of Reynolds number, fluid properties, constant uniform heat flux, flow, and geometry of the system on the optimum matrix porosity has been investigated. It was revealed that optimum matrix porosity values increase as Reynolds number increases. In the range of the present study, a correlation predicting optimal matrix porosity was proposed using least squares analysis.  相似文献   

18.
The importance of gold and silver nanoparticles in the blood flow has immense applications in biomedicine for the treatment of cancer disease and wound treatment due to their large atomic number and antimicrobial property. The current study deals with the magnetohydrodynamic and electroosmotic radiative peristaltic Jeffrey nanofluid (blood–silver/gold) flow with the effect of slip and convective boundary conditions in the nonsymmetric vertical channel. The nondimensional governing equations have been solved analytically and the exact solutions have been presented for velocity, temperature, shear stress, trapping, entropy generation, pressure gradient and heat transfer coefficient. The pictorial representations have been prepared for the flow quantities with respect to fluid flow parameters of interest. It is noticed from the current study that the gold-based nanofluids exhibit higher velocity than silver-based nanofluids. Enhancement of thermal radiation decreases the total entropy generation. The size of the tapered bolus decreases with the enhancement of magnetic field strength. The present model is applicable in designing pharmacodynamic pumps and drug delivery systems.  相似文献   

19.
The viscous dissipation effect on the thermodynamic performance of the curved square microchannels in laminar flow is numerically investigated. The classical Navier-Stokes equations are adopted; aniline and ethylene glycol are selected as the working fluids. The results show that the heat transfer entropy generation number and frictional entropy generation number augment relatively under viscous dissipation effect for the case of fluid heated, and the opposite results can be found for the case of fluid cooled. The heat transfer entropy generation number increases with Reynolds number at large Reynolds number region under viscous dissipation effect when ethylene glycol is heated. The total entropy generation number extremum exists for aniline, and the extremum happens earlier when aniline is heated than when aniline is cooled. The smaller the curvature radius is, the earlier the extremum appears. The extremum does not occur for ethylene glycol due to the predomination of frictional entropy generation in the total entropy generation.  相似文献   

20.
Optimization of industrial processes for higher energy efficiency may be effectively carried out based on the thermodynamic approach of entropy generation minimization (EGM). This approach provides the key insights on how the available energy (exergy) is being destroyed during the process and the ways to minimize its destruction. In this study, EGM approach is implemented for the analysis of optimal thermal mixing and temperature uniformity due to natural convection in square cavities filled with porous medium for the material processing applications. Effect of the permeability of the porous medium and the role of distributed heating in enhancing the thermal mixing, temperature uniformity and minimization of entropy generation is analyzed. It is found that at lower Darcy number (Da), the thermal mixing is low and the heat transfer irreversibility dominates the total entropy generation. In contrast, thermal mixing is improved due to enhanced convection at higher Da. Friction irreversibility is found to dominate the total entropy generation for higher Prandtl number (Pr) fluids at higher Da, whereas the heat transfer irreversibility dominates the total entropy generation for lower Pr fluids. Based on EGM analysis, it is established that larger thermal mixing at high Darcy number may not be always recommended as the total entropy production is quite large at high Darcy number. Overall, it is found that the distributed heating methodology with multiple heat sources may be an efficient strategy for the optimal thermal processing of materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号