首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bangladesh has been facing a power crisis for about a decade, mainly because of inadequate power generation capacity compared with demand and the ageing infrastructure of many existing power generation facilities. Only 20% of the total population are connected to grid electricity—25% in urban areas and a mere 10% in rural areas where 80% of the total population resides. Currently, most power plants in Bangladesh (representing 84.5% of the total installed capacity) use natural gas—the main commercial primary energy source, with limited national reserves—as a fuel. Electricity supply to low-load rural and remote areas is characterised by high transmission and distribution costs and transmission losses, and heavily subsidised pricing.Renewable energy sources in Bangladesh, particularly biomass, can play a major role to meet electricity demands in the rural and remote areas of the country. The current study indicates that in 2003, the national total generation and recovery rates of biomass in Bangladesh were 148.983 and 86.276 Mtonne, respectively. In energy term, the national annual amount of the recoverable biomass is equivalent to 312.613 TWh. Considering the present national consumption of biomass, total available biomass resources potential for electricity generation vary from 183.865 to 223.794 TWh. Biomass energy potential in the individual districts of the country has been estimated for the planning small- to medium-scale biomass-to-electricity plants.  相似文献   

2.
Concentrated solar power (CSP) plants generate an almost continuous flow of fully dispatchable “renewable” electricity and can replace the present fossil fuel power plants for base load electricity generation. Nevertheless, actual CSP plants have moderate electricity costs, in most cases quite low capacity factors and transient problems due to high inertia. Hybridization can help solve these problems and, if done with the integration of forest waste biomass, the “renewable” goal can be maintained, with positive impact on forest fire reduction. Local conditions, resources and feed in tariffs have great impact on the economical and technical evaluation of hybrid solutions; one of the premium European locations for this type of power plants is the Portuguese Algarve region.Due to the concept innovation level, conservative approaches were considered to be the best solutions. In this perspective, for a lower capital investment 4 MWe power plant scale, the best technical/economical solution is the hybrid CRS/biomass power plant HVIB3S4s with CS3 control strategy. It results in a levelized electricity cost (LEC) of 0.146 €/kWh, with higher efficiency and capacity factor than a conventional 4 MWe CRS. A larger 10 MWe hybrid power plant HVIB3S10s could generate electricity with positive economical indicators (LEC of 0.108 €/kWh and IRR of 11.0%), with twice the annual efficiency (feedstock to electricity) and lower costs than a conventional 4 MWe CRS. It would also lead to a 17% reduction in biomass consumption (approximately 12,000 tons less per year) when compared with a typical 10 MWe biomass power plant – FRB10; this would be significant in the case of continuous biomass price increase.  相似文献   

3.
Main electrical energy sources of Turkey are thermal and hydraulic. Most of the thermal sources are derived from natural gas. Turkey imports natural gas; therefore, decreasing usage of natural gas is very important for both economical and environmental aspects. Because of disadvantages of fossil fuels, renewable energy sources are getting importance for sustainable energy development and environmental protection. Among the renewable sources, Turkey has very high wind energy potential. The estimated wind power capacity of Turkey is about 83,000 MW while only 10,000 MW of it seems to be economically feasible to use. Start 2009, the total installed wind power capacity of Turkey was only 4.3% of its total economical wind power potential (433 MW). However, the strong development of wind energy in Turkey is expected to continue in the coming years. In this study, Turkey's installed electric power capacity, electric energy production is investigated and also Turkey current wind energy status is examined.  相似文献   

4.
Parabolic trough power plants are currently the most commercially applied systems for CSP power generation. To improve their cost-effectiveness, one focus of industry and research is the development of processes with other heat transfer fluids than the currently used synthetic oil. One option is the utilization of water/steam in the solar field, the so-called direct steam generation (DSG).Several previous studies promoted the economic potential of DSG technology (Eck et al., 2008b, Price et al., 2002, Zarza, 2002). Analyses’ results showed that live steam parameters of up to 500 °C and 120 bars are most promising and could lead to a reduction of the levelized electricity cost (LEC) of about 11% (Feldhoff et al., 2010). However, all of these studies only considered plants without thermal energy storage (TES).Therefore, a system analysis including integrated TES was performed by Flagsol GmbH and DLR together with Solar Millennium AG, Schott CSP GmbH and Senior Berghöfer GmbH, all Germany. Two types of plants are analyzed and compared in detail: a power plant with synthetic oil and a DSG power plant. The design of the synthetic oil plant is very similar to the Spanish Andasol plants (Solar Millennium, 2009) and includes a molten salt two-tank storage system. The DSG plant has main steam parameters of 500 °C and 112 bars and uses phase change material (PCM) for the latent and molten salt for the sensible part of the TES system. To enable comparability, both plants share the same gross electric turbine capacity of 100 MWel, the same TES capacity of 9 h of full load equivalent and the same solar multiple of the collector field of about two.This paper describes and compares both plants’ design, performance and investment. Based on these results, the LEC are calculated and the DSG plant’s potential is evaluated. One key finding is that with currently proposed DSG storage costs, the LEC of a DSG plant could be higher than those of a synthetic oil plant. When considering a plant without TES on the other hand, the DSG system could reduce the LEC. This underlines the large influence of TES and the still needed effort in the development of a commercial storage system for DSG.  相似文献   

5.
A thermal energy storage system, consisting of a packed bed of rocks as storing material and air as high-temperature heat transfer fluid, is analyzed for concentrated solar power (CSP) applications. A 6.5 MWhth pilot-scale thermal storage unit immersed in the ground and of truncated conical shape is fabricated and experimentally demonstrated to generate thermoclines. A dynamic numerical heat transfer model is formulated for separate fluid and solid phases and variable thermo-physical properties in the range of 20–650 °C, and validated with experimental results. The validated model is further applied to design and simulate an array of two industrial-scale thermal storage units, each of 7.2 GWhth capacity, for a 26 MWel round-the-clock concentrated solar power plant during multiple 8 h-charging/16 h-discharging cycles, yielding 95% overall thermal efficiency.  相似文献   

6.
7.
This article gives a general picture of the small hydropower (SHP) sector in the European Union's new Member States (the Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Slovakia and Slovenia—EU-10) and those wishing to join (Candidate Countries—CC)—Bulgaria, Romania and Turkey). The differences and similarities of the SHP sectors mainly related to the technical aspects, on one hand—the former EU-15, on the other hand—EU-10 and CC are revealed in particular (except legal, regulatory, environmental and other issues).SHP technical aspects expressed by quantitative estimates are briefly discussed here, namely: SHP potential; plants in operation and contribution to the gross and renewable electricity generation mix; manufacturing industry and support mechanism; SHP development environmental issues; forecast of SHP installed capacity and electricity generation. SHP legal, regulatory framework, economic and main barriers to the SHP promotion, which are crucial for sector development are also briefly considered in this article.The approach of this study was mainly focused on a questionnaire distributed to key SHP experts in each country. It addresses SHP, i.e. hydropower plants of installed capacity less than 10 MW. In most investigated countries this SHP capacity limit is officially approved. The indicated capacity is lower in Hungary and Poland—5 MW, in Latvia—2 MW and Estonia—1 MW.For more than 100 years SHP has been harnessed in most of the surveyed countries, with the exceptions of Malta and Cyprus. The leading countries are the Czech Republic, Romania, Poland, Turkey, Bulgaria, Slovenia and Slovakia. The biggest share of SHP economically feasible potential has been exploited in the Czech Republic, Romania, Slovenia and Bulgaria (between 40% and 60%). A very small part of this potential has been harnessed in Turkey (only 3%). The remaining economically feasible potential amounts to some 26 TWh/year in the surveyed countries.There are approximately 3200 plants installed in these countries, corresponding to a capacity of about 1430 MW of SHP. Conversely, a much larger number of SHP plants are installed in the EU-15 (some 14 000 with the total capacity of 10 000 MW). The average size of a SHP plant is about 0.44 MW (0.70 MW in EU-15). In almost all analyzed countries hydropower is a dominant source of energy in renewable electricity production. SHP is the second largest (after large hydro) contributor. The Czech Republic and Slovenia are the main countries with highest levels of turbine manufacturing industry. In some surveyed countries some opposition to SHP, mainly related to fish protection, visual impacts, enlargement of protected areas, has been identified.The current technical state of the SHP sector in the surveyed countries in terms of generating capacities and contribution to total electricity generation is relatively low by comparing with that of the former EU-15. Despite the fact that in the EU-10 and CC so far has been exploited just about 30% and 6% of economically feasible potential, they will never achieve the strength in terms of generating capacities of the SHP sector of the former EU-15 (more than 82% developed so far). The CC may slightly bridge this gap by harnessing their untapped SHP potential (especially in Turkey).A brief profile of SHP sector of the surveyed countries is provided at the end of the paper.  相似文献   

8.
This paper is Part 2 of the study on the exergetic and thermoeconomic analysis of diesel engine powered cogeneration (DEPC) systems. In Part 1, formulations and procedure for such a comprehensive analysis are provided while this paper provides an application of the developed formulation that considers an actual DEPC plant installed in Gaziantep, Turkey. The plant has a total installed electricity and steam generation capacities of 25.3 MW and 8.1 tons/h at 170 °C, respectively. Exergy destructions, exergy efficiencies, exergetic cost allocations, and various exergoeconomic performance parameters are determined for the entire plant and its components. The exergy efficiency of the plant is determined to be 40.6%. The exergoeconomic analysis is based on specific cost method (SPECO) and it is determined that the specific unit exergetic cost of the power produced by the plant is 10.3 $/GJ.  相似文献   

9.
Economic development in recent decades has been characterised by the increased use of fossil fuels. Clearly, a significant amount of this energy does not fall in line with the principles of sustainable development, either because of its contaminating effect or because of its non-renewable nature.Today, Navarre generates around 60% of its electricity requirements by means of wind power and small hydropower stations. On the downside, Navarre's energy consumption is above average for the European Union and its economy is growing at an annual rate in excess of 5%. The Castejón (800 MW) thermal power stations, scheduled for enlargement, generate more energy than Navarre's entire wind power sector.In terms of hydroelectric power, there are around 200 small hydropower plants in operation. In addition, the Autonomous Community of Navarre has installed a biomass plant in Sangüesa, with an installed output of 25 MW, annually generating 200 GWh through the combustion of 160,000 t of cereal straw.In addition, Navarre, specifically Tudela, is the site of the largest solar energy plant in Spain, producing 1.2 MWp, following its connection to the grid at the beginning of the year. Two thirds of the 10,080 panels are arranged in a central body and the remaining third are panels pertaining to different technologists and technologies involved in research and development.  相似文献   

10.
This paper discusses solar power prospects in Wilayat Duqum in Oman. First, the geographic and topographic information about the selected region is presented. The methodology of producing solar radiation map for Duqum using GIS tools is then presented. The results obtained show very high potential of solar radiation over Wilayat Duqum during the whole year. A slope analysis has allowed calculating the yearly electricity generation potential for different concentrated solar power (CSP) technologies such as the parabolic trough, parabolic dish, tower, and concentrated PV. Based on the development plan of the Duqum region, and the topologies of the land areas in the region, it is suggested that, for the CSP technologies requiring large amount of water for washing the mirrors, the selected area is a flat land (slope < 1%) located proximity to the sea (~2 km) inside a total industrial area of around 50 km2, hence, allowing easy future expansion of the plant. It was proposed to start with a 100 MW power plant which is expected to consume about 2.4 km2 of flat land for the parabolic trough CSP technology. The total calculated potential of yearly electricity generation would be about 2.3 TWh. If half of the selected land (0.5 × 50 km2) is reserved for future expansion of the plant, the total future capacity can attain 1 GW of electric power. The selected area can also accommodate in the future different types of CSP technologies as they mature with time.  相似文献   

11.
Geothermal energy and the other renewable energy sources are becoming attractive solutions for clean and sustainable energy needs of Turkey. Geothermal energy is being used for electricity production and it has direct usage in Turkey, which is among the first five countries in the world for the geothermal direct usage applications. Although, Turkey is the second country to have the highest geothermal energy potential in Europe, the electricity production from geothermal energy is quite low. The main purpose of this study is to investigate the status of the geothermal energy for the electricity generation in Turkey. Currently, there is one geothermal power plant with an installed capacity of 20.4 MWe already operating in the Denizli–Kizildere geothermal field and another is under the construction in the Aydin–Germencik field.This study examines the potential and utilization of the existing geothermal energy resources in Kutahya–Simav region. The temperature of the geothermal fluid in the Simav–Eynal field is too high for the district heating system. Therefore, the possibility of electrical energy generation by a binary-cycle has been researched and the preliminary feasibility studies have been conducted in the field. For the environmental reasons, the working fluid used in this binary power plant has been chosen as HCFC-124. It has been concluded that the Kutahya–Simav geothermal power plant has the potential to produce an installed capacity of 2.9 MWe energy, and a minimum of 17,020 MWh/year electrical energy can be produced from this plant. As a conclusion, the pre-feasibility study indicates that the project is economically feasible and applicable.  相似文献   

12.
The potential of biogas generation from anaerobic digestion of different waste biomass in India has been studied. Renewable energy from biomass is one of the most efficient and effective options among the various other alternative sources of energy currently available. The anaerobic digestion of biomass requires less capital investment and per unit production cost as compared to other renewable energy sources such as hydro, solar and wind. Further, renewable energy from biomass is available as a domestic resource in the rural areas, which is not subject to world price fluctuations or the supply uncertainties as of imported and conventional fuels. In India, energy demand from various sectors is increased substantially and the energy supply is not in pace with the demand which resulted in a deficit of 11,436 MW which is equivalent to 12.6% of peak demand in 2006. The total installed capacity of bioenergy generation till 2007 from solid biomass and waste to energy is about 1227 MW against a potential of 25,700 MW. The bioenergy potential from municipal solid waste, crop residue and agricultural waste, wastewater sludge, animal manure, industrial waste which includes distilleries, dairy plants, pulp and paper, poultry, slaughter houses, sugar industries is estimated. The total potential of biogas from all the above sources excluding wastewater has been estimated to be 40,734 Mm3/year.  相似文献   

13.
A detailed reliability assessment of bioenergy production systems based on poplar cultivation was made. The aim of this assessment was to demonstrate the Economic feasibility of implementing poplar biomass production for power generation in Spain. The assessment considers the following chain of energy generation: cultivation and harvesting, and transportation and electricity generation in biomass power plants (10, 25 and 50 MW). Twelve scenarios were analysed in accordance with the following: two harvesting methods (high density packed stems and chip production in the field), two crop distributions around the power plant and three power plant sizes. The results show that the cost of biomass delivered at power plant ranges from 18.65 to 23.96  Mg?1 dry basis. According to power plant size, net profits range from 3 to 22 million  per yr.Sensibility analyses applied to capital cost at the power plant and to biomass production in the field demonstrate that they do not affect the feasibility of these systems. Reliability is improved if benefits through selling CO2 emission credits are taken into account.This study clears up the Economic uncertainty of poplar biomass energy systems that already has been accepted as environmentally friendlier and as offering better energetic performance.  相似文献   

14.
In this work, a technical and economic analysis concerning the integration of parabolic trough concentrated solar power (CSP) technologies, with or without thermal storage capability, in an existing typical small isolated Mediterranean power generation system, in the absence of a feed-in tariff scheme, is carried out. In addition to the business as usual (BAU) scenario, five more scenarios are examined in the analysis in order to assess the electricity unit cost with the penetration of parabolic trough CSP plants of 50 MWe or 100 MWe, with or without thermal storage capability. Based on the input data and assumptions made, the simulations indicated that the scenario with the utilization of a single parabolic trough CSP plant (either 50 MWe or 100 MWe and with or without thermal storage capability) in combination with BAU will effect an insignificant change in the electricity unit cost of the generation system compared to the BAU scenario. In addition, a sensitivity analysis on natural gas price, showed that increasing fuel prices and the existence of thermal storage capability in the CSP plant make this scenario marginally more economically attractive compared to the BAU scenario.  相似文献   

15.
Solar chimney thermal power technology that has a long life span is a promising large-scale solar power generating technology. This paper performs economic analysis of power generation from floating solar chimney power plant (FSCPP) by analyzing cash flows during the whole service period of a 100 MW plant. Cash flows are influenced by many factors including investment, operation and maintenance cost, life span, payback period, inflation rate, minimum attractive rate of return, non-returnable subsidy rate, interest rate of loans, sale price of electricity, income tax rate and whether additional revenue generated by carbon credits is included or not. Financial incentives and additional revenue generated by carbon credits can accelerate the development of the FSCPP. Sensitivity analysis to examine the effects of the factors on cash flows of a 100 MW FSCPP is performed in detail. The results show that the minimum price for obtaining minimum attractive rate of return (MARR) of 8% reaches 0.83 yuan (kWh)?1 under financial incentives including loans at a low interest rate of 2% and free income tax. Comparisons of economics of the FSCPP and reinforced concrete solar chimney power plant or solar photovoltaic plant are also performed by analyzing their cash flows. It is concluded that FSCPP is in reality more economical than reinforced concrete solar chimney power plant (RCSCPP) or solar photovoltaic plant (SPVP) with the same power capacity.  相似文献   

16.
《Biomass & bioenergy》2007,31(7):503-511
The palm oil mills are characterized by the availability of considerable amounts of by-products of high-energy value such as empty fruit bunches (EFB), fibers, shells and liquid effluents with high content of organics called palm oil mill effluent (POME). A palm oil mill produces residues equivalent to almost three times the amount of oil produced by biomass, showing a huge potential for increasing the power efficiency of the plants and installed power, mainly by the use of by-products in cogeneration plants with high steam parameters and by reducing steam consumption in process. The objective of this paper is to present the results of the study about the cogeneration potential for three representative palm oil mills located in two important palm oil producing regions in Colombia (South-America), fifth palm oil producers of the world. The sizing of the cogeneration system was made assuming it operation during the greatest possible number of hours throughout the year (based on the seasonal availability of fruit) considering parameters for the steam at 2 MPa and 350 °C, using a condensing-extraction turbine. The balance of mass and energy was made by using the Gate Cycle Enter Software, version 5.51, to estimate the potential of electricity generation. The results showed that for fresh fruit bunch (FFB) processing capacities between 18 and 60 t FFB h−1, it is possible to have surplus power ranging between 1 and 7 MW, if the plants are self-sufficient in electric energy and steam for process. With an average Capacity Factor (approximately 0.4), it is possible to expect a generation index of 75 and 160 kWh t−1 FFB when the processing plant is operating or shutdown, respectively, 3 or 4 times better than when a traditional system with a back-pressure steam turbines is used. This analysis used up to 60% of EFB produced in plant as fuel, considering its value as fertilizer for the palm crop. Several economic conditions were considered to estimate the economic and technical feasibility of cogeneration systems in palm oil mill for Colombian palm oil sector.  相似文献   

17.
《Biomass & bioenergy》2006,30(6):580-583
One unit of Sardar Patel Renewable Energy Research Institute (SPRERI's) 1.25 GJ h−1 capacity open core down draft gasifier burner system, suitable for thermal application was installed at M/s Dinesh Pharmaceutical Pvt. Ltd., Nandesari, for steam generation. Producer gas burner was used in dual fuel mode (60% LDO (light diesel oil)+40% producer gas). Gasifier consumed 78–80 kg h−1 of wood, and replaced 40% (20 l h−1) LDO. The system was tested for a cumulative period of 600 h using sawmill woody waste as feedstock in test runs of 15–18 h. Financial analysis of the gasifier system showed that user could save about Rs. 221.8 per hour by using dual fuel (60% LDO+40% producer gas) for steam generation. Economic analysis of the system tested in the field indicated the viability of the gasifier-based operation.  相似文献   

18.
Methods for efficiently drying agricultural products are in ever-increasing demand. Due to its thorough mixing ability, a fluidized bed technique was employed to evaluate the drying kinetics of thin-layer chopped coconut. The experiments were conducted at drying temperatures of 60–120 °C and a constant velocity of 2.5 m/s. Chopped coconut was dried from about 105% d.b. to approximately 3% d.b. The moisture transport phenomenon in fluidized bed thin-layer drying is described by immense acceleration in MR diminution in the early stage of drying, followed by considerable deceleration. Falling-rate drying, an outgrowth of restraining moisture transfer via internal mass-diffusion mechanism, thoroughly characterized chopped coconut drying. Among the 10 selected models, statistic analysis inferred that the Modified Henderson and Pabis model could predict changes in moisture content most accurately. Compared with the values of Deff derived from Fick’s law for other food and biological materials usually dried in conventional tray dryers, the current values (5.9902 × 10?8–2.6616 × 10?7 m2/s) were substantially high, principally attributable to the unique characteristic of fluidized bed drying, remarkably encouraging heat and mass transfer. Activation energy was also described.  相似文献   

19.
Selection of an appropriate HTF is important for minimising the cost of the solar receiver, thermal storage and heat exchangers, and for achieving high receiver and cycle efficiencies. Current molten salt HTFs have high melting points (142–240 °C) and degrade above 600 °C. Sodium’s low melting point (97.7 °C) and high boiling point (873 °C) allow for a much larger range of operational temperatures. Most importantly, the high temperatures of sodium allow the use of advanced cycles (e.g. combined Brayton/Rankine cycles). In this study, a comparison between the thermophysical properties of two heat transfer fluids (HTFs), Hitec (a ternary molten salt 53% KNO3 + 40% NaNO2 + 7% NaNO3) and liquid sodium (Na), has been carried out to determine their suitability for use in high-temperature concentrated solar thermal central-receiver systems for power generation. To do this, a simple receiver model was developed to determine the influences of the fluids’ characteristics on receiver design and efficiency. While liquid sodium shows potential for solar thermal power systems due to its wide range of operation temperatures, it also has two other important differences – a high heat transfer coefficient (~an order of magnitude greater than Hitec) and a low heat capacity (30–50% lower than Hitec salt). These issues are studied in depth in this model. Overall, we found that liquid sodium is potentially a very attractive alternative to molten salts in next generation solar thermal power generation if its limitations can be overcome.  相似文献   

20.
Ocean thermal energy conversion (OTEC) is a power generation method that utilizes small temperature difference between the warm surface water and cold deep water of the ocean. This paper describes the performance simulation results of an OTEC plant that utilizes not only ocean thermal energy but also solar thermal energy as a heat source. This power generation system was termed SOTEC (solar-boosted ocean thermal energy conversion). In SOTEC, the temperature of warm sea water was boosted by using a typical low-cost solar thermal collector. In order to estimate the potential thermal efficiency and required effective area of a solar collector for a 100-kWe SOTEC plant, first-order modeling and simulation were carried out under the ambient conditions at Kumejima Island in southern part of Japan. The results show that the proposed SOTEC plant can potentially enhance the annual mean net thermal efficiency up to a value that is approximately 1.5 times higher than that of the conventional OTEC plant if a single-glazed flat-plate solar collector of 5000-m2 effective area is installed to boost the temperature of warm sea water by 20 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号