共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
J. Wu T. Koettig Ch. Franke D. Helmer T. Eisel F. Haug J. Bremer 《International Journal of Heat and Mass Transfer》2011,54(9-10):2154-2162
An innovative cooling system based on evaporative CO2 two-phase flow is under investigation for the tracker detectors upgrade at CERN (European Organization for Nuclear Research). The radiation hardness and the excellent thermodynamic properties emphasize carbon dioxide as a cooling agent in the foreseen minichannels. A circular stainless steel tube in horizontal orientation with an inner diameter of 1.42 mm and a length of 0.3 m has been used as a test section to perform the step-wise scanning of the vapor quality in the entire two-phase region. To characterize the heat transfer and the pressure drop depending on the vapor quality in the tube, measurements have been performed by varying the mass flux from 300 to 600 kg/m2 s, the heat flux from 7.5 to 29.8 kW/m2 and the saturation temperature from ?40 to 0 °C (reduced pressures from 0.136 to 0.472). Heat transfer coefficients between 4 kW/m2 K and 28 kW/m2 K and pressure gradients up to 75 kPa/m were registered. The measured data was analyzed corresponding to the dependencies on heat flux, mass flux and saturation temperature. A database has been established containing about 2000 measurement points. The experimental data was compared with common models recently developed by Cheng et al. [1], [2] to cross check their applicability. The overall trends and experimental data were reproduced as predicted by the models before the dryout onset, and deviations have been analyzed. A modified friction factor for the pressure drop model [1] in mist flow has been proposed based on the experimental data. 相似文献
3.
《International Journal of Heat and Mass Transfer》2007,50(23-24):4796-4804
The effects of PAG oil concentration on the convective gas cooling heat transfer and the pressure drop characteristics of supercritical CO2/oil mixture in minichannel tube were investigated. The test results showed that the average gas cooling heat transfer coefficient was decreased by 20.4% and the average pressure drop was increased by 4.8 times when the oil concentration was increased from 0 to 4 wt.%. The effects of the oil concentration on the convective gas cooling heat transfers and the pressure drops of the supercritical CO2/oil mixture in minichannel tubes were experimentally confirmed to be significant. 相似文献
4.
Study on the convective heat transfer and pressure drop in the micro-channel heat sink 总被引:1,自引:0,他引:1
Experiments have been performed to investigate the heat transfer characteristics and pressure drop in the micro-channel heat sinks under constant heat flux conditions. The experiments are performed for the Reynolds number and heat flux in the ranges of 200–1000 and 1.80–5.40 kW/m2, respectively. The micro-channel heat sink with two different channel heights and two different channel widths are accomplished by wire electrical discharge machine. Effects of different geometrical configurations parameters of the micro-channel and heat flux on the heat transfer characteristics and pressure drop are considered. The micro-channel geometry configuration has significant effect on the enhancement heat transfer and pressure drop. The results of this study are expected to lead to guidelines that will allow the design of the micro-channel heat exchangers with improved heat transfer performance of the electronic devices. 相似文献
5.
6.
Özden A?ra Hakan Demir ?. Özgür Atay?lmaz Fatih Kanta? Ahmet Selim Dalk?l?ç 《International Communications in Heat and Mass Transfer》2011,38(10):1384-1391
This study investigates passive heat transfer enhancement techniques to determine the distribution of temperature and static pressure in test tubes, the friction factor, the heat flux, the temperature difference between the inlet and outlet fluid temperatures, the pressure drop penalty and the numerical convective heat transfer coefficient, and then compares the results to the experimental data of Zdaniuk et al. It predicts the single-phase friction factors for the smooth and enhanced tubes by means of the empirical correlations of Blasius and Zdaniuk et al. This study performed calculations on a smooth tube and two helically finned tubes with different geometric parameters also used in the analyses of Zdaniuk et al. It also performed calculations on two corrugated tubes in the simulation study. In Zdaniuk et al.'s experimental setup, the horizontal test section was a 2.74 m long countercurrent flow double tube heat exchanger with the fluid of water flowing in the inner copper tube (15.57–15.64 mm i.d.) and cooling water flowing in the annulus (31.75 mm i.d.). Their test runs were performed at a temperature around 20 °C for cold water flowing in the annulus while Reynolds numbers ranged from 12,000 to 57,000 for the water flowing in the inner tube. A single-phase numerical model having three-dimensional equations is employed with either constant or temperature dependent properties to study the hydrodynamics and thermal behaviors of the flow. The temperature contours are presented for inlet, outlet and fully developed regions of the tube. The variations of the fluid temperature and static pressure along tube length are shown in the paper. The results obtained from a numerical analysis for the helically tubes were validated by various friction factor correlations, such as those found by Blasius and Zdaniuk et al. Then, numerical results were obtained for the two corrugated tubes as a simulation study. The present study found that the average deviation is less than 5% for the friction factors obtained by the Fluent CFD program while Blasius's correlation has the average deviation of less than 10%. The corrugated tubes have a higher heat transfer coefficient than smooth tubes but a lower coefficient than helically finned tubes. The paper also investigates the pressure drop penalty for the heat transfer enhancement. 相似文献
7.
Nanofluids contain a small fraction of solid nanoparticles in base fluids. Nanofluids cooled small channel heat sinks, have been anticipated to be an excellent heat dissipation method for the next generation electronic devices. In this study, nanofluids are used with different volume fractions of nanoparticles as a coolant for the minichannel. Al2O3–water nanofluid and TiO2–water nanofluid were tested for the copper minichannel heat sink, with the bottom of 20 × 20 mm laminar flow as a coolant, through hydraulic diameters. The result showed that adding Al2O3 nanoparticles to water at 4% of volume fractions, enhanced the thermal conductivity by 11.98% and by dispersing TiO2 to the base fluid, was 9.97%. It was found that using nanofluid such as Al2O3–water instead of water, improved the cooling by 2.95% to 17.32% and by using TiO2–water, 1.88% to 16.53% was achieved. The highest pumping power by using Al2O3–water and TiO2–water at 4 vol.% and 0.1 m/s was 0.000552 W and at 4 vol.% and 1.5 m/s was 0.12437 W. 相似文献
8.
《International Journal of Heat and Mass Transfer》2006,49(11-12):1922-1927
This paper presents the experimental results of condensing heat transfer coefficients and pressure gradients of HC refrigerants (e.g. R-1270, R-290 and R-600a) and R-22 in horizontal double pipe heat exchangers, having two different internal diameters of 12.70 mm and 9.52 mm (OD), respectively. Both the local condensing heat transfer coefficients and pressure drops (inside the tube) of hydrocarbon refrigerants were higher than R-22. The average condensing heat transfer coefficient increased with the mass flux. The experimental heat transfer coefficients agreed with the correlations of Shah, Travis and Cavallini–Zecchin’s to within ±20%. These results can be useful in the design of new heat exchangers involving hydrocarbon refrigerants for future air-conditioning systems. 相似文献
9.
This study concerns pressure drop in a two-phase heat sink containing an array of staggered square micro-pin-fins having a 200 × 200 μm2 pin cross-section by a 670 μm pin height. Three inlet temperatures of 30, 60 and 90 °C, and six maximum mass velocities for each inlet temperature, ranging from 183 to 420 kg/m2 s, were tested. Frictional pressure drop in the boiling region is deemed the dominant pressure drop component. The Lockhart–Martinelli correlation for laminar liquid–laminar vapor combination in conjunction with a previous single-phase friction factor correlation can adequately predict the data. Micro-pin-fins offer better flow stability than parallel micro-channels. 相似文献
10.
Salwa Marzouk Salem El Golli Philippe Bournot 《International Journal of Heat and Mass Transfer》2003,46(22):4319-4334
In this paper, we propose numerical solutions for a two-dimensional pulsed plane jet in unsteady laminar regime. At the exit of the nozzle, the pulsating flow is imposed with a uniform temperature T0 and a velocity u=u0(1+Asin(ωt)). Two cases are considered: the free and the wall pulsed plane jet. For the wall jet case, the wall may either be considered adiabatic or subjected to a uniform temperature. Equations are treated with an appropriate finite difference method. The effect of the important governing parameters, such as the amplitude and the frequency of the pulsation, the Reynolds and Grashof numbers on the flow behavior are also investigated in detail. The results obtained show that the pulsation affects the flow in a vicinity region of the nozzle to reach the same asymptotic regime than the steady jet. The results also indicate that the initial development of the jet is considerably accelerated and the entrainment in the first diameters is enhanced. 相似文献
11.
O.N. Sara
. Barlay Ergu M.E. Arzutug S. Yapc 《International Journal of Thermal Sciences》2009,48(10):1894-1900
The investigation of laminar convective mass transfer and friction factor was performed experimentally for the circular tubes with the diameter of 0.20 mm and the L/d values in the range of 100–500 for a Reynolds number range of 40–1400. The pressure drop experiments were conducted with distilled water, and the mass transfer experiments were carried out with an electrochemical solution by using the electrochemical limiting diffusion current technique. The friction factor results showed good agreement with the classical Poiseuille flow theory, while Sherwood numbers are smaller than those obtained by conventional correlations. 相似文献
12.
Bruno F. Pussoli Jader R. Barbosa Luciana W. da Silva Massoud Kaviany 《International Journal of Heat and Mass Transfer》2012,55(11-12):2835-2843
The peripheral-finned tube is a new geometry aimed at avoiding moisture-condensate blockage hindering of the air-side heat transfer, by allowing for robust air flow pathways. It consists of a porous structure formed by periodic, radial-hexagonal fin arrangements of different radial extents mounted with a 30° offset from its neighboring level. Here, the air-side pressure drop and the heat transfer characteristics of five different heat exchanger prototypes with different geometric characteristics, such as the radial fin length, fin distribution, and heat exchanger length, were evaluated experimentally in an open-loop wind-tunnel calorimeter. The results demonstrate the effective performance, i.e., the pressure drop and heat transfer characteristics, of this new heat exchanger. A one-dimensional theoretical model based on the porous media treatment was also developed to predict the thermal-hydraulic behavior of the heat exchanger. The model incorporates the actual fin geometry into the calculation of the air-side porosity. The air-side permeability is calculated according to the Kozeny–Carman model and the particle-diameter based analysis. The model predicts the experimental data within a few percent RMS, depending on the correlations used for the friction coefficient and interstitial Nusselt number. 相似文献
13.
The present study applies the inverse method in conjunction with the experimental temperature data to investigate the accuracy of the heat transfer coefficient on the fin in the plate-fin heat sink for various fin spacings. The commercial software is applied to solve the governing differential equations with the RNG k–? model in order to obtain the heat transfer and fluid flow characteristics. Under the assumption of the non-uniform heat transfer coefficient, the entire fin is divided into several sub-fin regions before performing the inverse scheme. The average heat transfer coefficient in each sub-fin region is assumed to be unknown. Later, the present inverse scheme in conjunction with the experimental temperature data is applied to determine the heat transfer coefficient and fin efficiency. In order to determine a more reliable heat transfer coefficient, a comparison between the present inverse and numerical results and those obtained from the existing correlations will be made. The numerical fin temperatures will also be compared with the experimental data. 相似文献
14.
Numerical calculations were carried out for supercritical carbon dioxide flowing in miniature tubes with Re less than 1000. The heat transfer coefficient α and friction factor f were numerically studied for different values of the tube diameter, pressure, mass flux, and heat flux. When compared with the constant property flow, where Nu = 4.364 and f = 64/Re for a circular tube under a constant heat flux condition, a large divergence from the constant value was obtained for both Nu and f·Re in the vicinity of the pseudocritical temperature Tm. When cooled under a constant heat flux, Nu attained its peak value when Tb > Tm and its minimum value when Tb < Tm, while f·Re attained its peak value at Tb = Tm. With regard to the heating process, the reverse tendencies were confirmed. The variations of the specific heat with temperature were found to be the dominant factor for Nu. In addition, empirical correlations that considered the cross-sectional distribution of thermophysical properties were proposed to predict the values of Nu and f both in the near-pseudocritical temperature region and in the thermal entrance region of the tube. The proposed correlations were also verified by comparing the predicted results with numerical results obtained by using supercritical water. 相似文献
15.
A steady-state three-dimensional numerical model was used to study the heat transfer and pressure drop characteristics of an offset strip fin heat exchanger. Water was the heat transfer medium, and the Reynolds number Redh ranged from 10 to 3500. Variations in the Fanning friction factor f and the Colburn heat transfer factor j relative to Redh were observed. General correlations for the f and j factors were derived, and these could be used to analyze fluid flow and heat transfer characteristics of offset strip fins in the laminar, transition, and turbulent regions. Finally, three performance criteria (j/f, j/f1/3, and JF) were adopted, and the best performance criteria for the cases Pr = 7 and Pr = 50 were chosen to be JF and j/f1/3, respectively. 相似文献
16.
Experimental Study on Heat Transfer and Pressure Drop Characteristics of Four Types of Plate Fin-and-TUbe Heat Exchanger Surfaces 总被引:3,自引:0,他引:3
ExperimentalStudyonHeatTransferandPressureDropCharacteristicsofFourTypesofPlateFin-and-TUbeHeatExchangerSurfaces¥H.J.Kang;W.L... 相似文献
17.
通过数值模拟的方法,研究了小翼式涡产生器对错排圆管管片式换热芯子换热与阻力特性的影响,比较了光板与加涡产生器强化板芯的速度场、横向平均Nu数以及平均对流换热系数、阻力系数的变化规律,为进一步提高其换热性能、改进翅片结构、设计新型换热器提供了理论依据。 相似文献
18.
Marko Matkovic Alberto Cavallini Davide Del Col Luisa Rossetto 《International Journal of Heat and Mass Transfer》2009,52(9-10):2311-2323
The measurement of the condensation heat transfer coefficient inside micro- and minichannels is still somewhat elusive due to the difficult task of getting accurate values of the heat transfer coefficients during the condensation process, particularly when studied within single minichannels. The present paper reports local heat transfer coefficients obtained from the measurement of the local heat flux and the direct measurement of the saturation and wall temperatures during condensation of R134a and R32 within a single circular 0.96 mm diameter minichannel. Except for the lowest mass velocity, the test results do not show significant discrepancy from the trends expected for macroscale tubes. 相似文献
19.
H.A. Mohammed P. GunnasegaranN.H. Shuaib 《International Communications in Heat and Mass Transfer》2011,38(1):63-68
In this paper, heat transfer and water flow characteristics in wavy microchannel heat sink (WMCHS) with rectangular cross-section with various wavy amplitudes ranged from 125 to 500 μm is numerically investigated. This investigation covers Reynolds number in the range of 100 to 1000. The three-dimensional steady, laminar flow and heat transfer governing equations are solved using the finite-volume method (FVM). The water flow field and heat transfer phenomena inside the heated wavy microchannels is simulated and the results are compared with the straight microchannels. The effect of using a wavy flow channel on the MCHS thermal performance, the pressure drop, the friction factor, and wall shear stress is reported in this article. It is found that the heat transfer performance of the wavy microchannels is much better than the straight microchannels with the same cross-section. The pressure drop penalty of the wavy microchannels is much smaller than the heat transfer enhancement achievement. Both friction factor and wall shear stress are increased proportionally as the amplitude of wavy microchannels increased. 相似文献
20.
D. Missirlis S. Donnerhack O. Seite C. Albanakis A. Sideridis K. Yakinthos A. Goulas 《Applied Thermal Engineering》2010,30(11-12):1341-1350
Heat exchangers are used in various applications. In a typical CFD approach, where it is necessary to model the flow in a device with a heat exchanger, a first step can be the construction of a very detailed mesh modeling each flow passage inside the device. However, this approach can lead to very fine grids with high demands of CPU power and memory requirements. In order to overcome this problem, the presence of the heat exchanger can be modeled as a porous medium having the same thermal and flow behaviour as the original device. In this work, a generalized porous medium model was developed for a heat exchanger designed to be used as a heat recuperator for an aero engine. For the porosity model a modified anisotropic formulation of the Darcy–Forchheimer pressure drop law was introduced together with a heat transfer model in the form of a Nusselt–Reynolds–Prandtl numbers correlation. For the derivation of the pressure drop and heat transfer coefficients various data from experimental measurements were used. In order to assess the performance of the proposed model, CFD computations were performed. For all the examined cases, the CFD results were in close agreement with the experimental data and thus, the developed porosity model could sufficiently, describe the macroscopic behaviour of the heat exchanger. 相似文献