首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present review aims to study the prospects and opportunities of introducing vegetable oils and their derivatives as fuel in diesel engines. In our country the ratio of diesel to gasoline fuel is 7:1, depicting a highly skewed situation. Thus, it is necessary to replace fossil diesel fuel by alternative fuels. Vegetable oils present a very promising scenario of functioning as alternative fuels to fossil diesel fuel. The properties of these oils can be compared favorably with the characteristics required for internal combustion engine fuels. Fuel-related properties are reviewed and compared with those of conventional diesel fuel. Peak pressure development, heat release rate analysis, and vibration analysis of the engine are discussed in relation with the use of bio-diesel and conventional diesel fuel. Optimization of alkali-catalyzed transesterification of Pungamia pinnata oil for the production of bio-diesel is discussed. Use of bio-diesel in a conventional diesel engine results in substantial reduction in unburned hydrocarbon (UBHC), carbon monoxide (CO), particulate matters (PM) emission and oxide of nitrogen. The suitability of injection timing for diesel engine operation with vegetable oils and its blends, environmental considerations are discussed. Teardown analysis of bio-diesel B20-operated vehicle are also discussed.  相似文献   

2.
Previous work in our laboratory has shown that the exhaust gas assisted fuel reforming process has the potential to provide a solution to the diesel engine exhaust emission problems. When simulated reformer product gas rich in hydrogen is fed to the engine, a reduction of both NOx and smoke emissions can be achieved. In this paper, the optimisation of the reforming process by water addition in the reactor is presented. Using a prototype catalyst at 290°C reactor inlet temperature, up to 15% more hydrogen in the reformer product was obtained compared to operation without water. The process has been found to be mainly a combination of the fuel oxidation, steam reforming and water gas shift reactions. The reforming process efficiency has been shown to improve considerably with water addition up to a certain level after which the adverse effects of the exothermic water gas shift reaction become significant.  相似文献   

3.
A single-cylinder diesel engine has been converted into a dual-fuel engine to operate with natural gas together with a pilot injection of diesel fuel used to ignite the CNG–air charge. The CNG was injected into the intake manifold via a gas injector on purpose designed for this application. The main performance of the gas injector, such as flow coefficient, instantaneous mass flow rate, delay time between electrical signal and opening of the injector, have been characterized by testing the injector in a constant-volume optical vessel. The CNG jet structure has also been characterized by means of shadowgraphy technique.  相似文献   

4.
Depleting fossil fuel sources accompanied by continuously growing energy demands lead to increased interest in alternative energy sources. Blended biodiesel–diesel fuel has been approved as a commercial fuel at a low blending ratio. However, problems related to fuel properties are persistent at high blending ratios. Hence, in this study, the feasibility of biodiesel produced from palm oil was investigated. Characterization of blended fuel properties with increasing palm biodiesel ratio is conducted to evaluate engine performance test results. The qualifying of blended fuel properties was used to indicate the maximum blending ratio suitable for use in unmodified diesel engines according to the blended fuel standard ASTM D7467. The property test results revealed that blended fuel properties meet blended fuel standard requirements at up to 30% palm oil biodiesel. Furthermore, blending is efficient for reduction of the pour point from 14 °C for unblended biodiesel to less than 0 °C at a 30% biodiesel blending ratio. However, the energy content reduces by about 1.42% for each 10% increment of biodiesel. Engine test results demonstrated that there was no statistically significant difference for engine brake thermal efficiency among tested blended fuels compared to mineral diesel, and the lowest engine cyclic variation was achieved with blended fuel B30.  相似文献   

5.
This study reports the effects of engine load and biodiesel percentage on the performance of a diesel engine fueled with diesel–biodiesel blends by experiments and a new theoretical model based on the finite-time thermodynamics (FTT). In recent years, biodiesel utilization in diesel engines has been popular due to depletion of petroleum-based diesel fuel. In this study, performance of a single cylinder, four-stroke, direct injection (DI) diesel engine fueled with diesel–biodiesel mixtures has been experimentally and theoretically investigated. The simulation results agree with the experimental data. After model validation, the effects of engine load and biodiesel percentage on engine performance have been parametrically investigated. The results showed that, effective power increases constantly, effective efficiency increases to a specified value and then starts to decrease with increasing engine load at constant biodiesel percentage and compression ratio. However, effective efficiency increases, effective power decreases to a certain value and then begins to increase with increasing biodiesel percentage at constant equivalence ratio and compression ratio.  相似文献   

6.
An experimental investigation on the application of the blends of ethanol with diesel to a diesel engine was carried out. First, the solubility of ethanol and diesel was conducted with and without the additive of normal butanol (n-butanol). Furthermore, experimental tests were carried out to study the performance and emissions of the engine fuelled with the blends compared with those fuelled by diesel. The test results show that it is feasible and applicable for the blends with n-butanol to replace pure diesel as the fuel for diesel engine; the thermal efficiencies of the engine fuelled by the blends were comparable with that fuelled by diesel, with some increase of fuel consumptions, which is due to the lower heating value of ethanol. The characteristics of the emissions were also studied. Fuelled by the blends, it is found that the smoke emissions from the engine fuelled by the blends were all lower than that fuelled by diesel; the carbon monoxide (CO) were reduced when the engine ran at and above its half loads, but were increased at low loads and low speed; the hydrocarbon (HC) emissions were all higher except for the top loads at high speed; the nitrogen oxides (NOx) emissions were different for different speeds, loads and blends.  相似文献   

7.
Different alternative fuels have been proposed by various researchers in diesel engines in view of increased NOx and particulate emissions. Out of the various methods proposed, dual fueling is one of the most important techniques that helps solve the different operational problems related to diesel engine combustion and emission. In the current study, modeling and predicting the formation of NOx emission in a duel fuel liquefied petroleum gas (LPG)–diesel engine has been undertaken. Simulations have been conducted for various LPG flow rates at different engine loads and the predicted NOx values are compared with the experimental values. The results found that there is a decent agreement between the forecasted and the investigational results, where the average difference is within 13.7%. Furthermore, it is found that minimum NOx emission was observed for an LPG flow rate in the range of 0.4–0.6 kg/h and when the engine is running with 75% loading.  相似文献   

8.
As the environment degrades at an alarming rate, there have been steady calls by most governments following international energy policies for the use of biofuels. One of the biofuels whose use is rapidly expanding is biodiesel. One of the economical sources for biodiesel production which doubles in the reduction of liquid waste and the subsequent burden of sewage treatment is used cooking oil (UCO). However, the products formed during frying, such as free fatty acid and some polymerized triglycerides, can affect the transesterification reaction and the biodiesel properties. This paper attempts to collect and analyze published works mainly in scientific journals about the engine performance, combustion and emissions characteristics of UCO biodiesel on diesel engine. Overall, the engine performance of the UCO biodiesel and its blends was only marginally poorer compared to diesel. From the standpoint of emissions, NOx emissions were slightly higher while un-burnt hydrocarbon (UBHC) emissions were lower for UCO biodiesel when compares to diesel fuel. There were no noticeable differences between UCO biodiesel and fresh oil biodiesel as their engine performances, combustion and emissions characteristics bear a close resemblance. This is probably more closely related to the oxygenated nature of biodiesel which is almost constant for every biodiesel (biodiesel has some level of oxygen bound to its chemical structure) and also to its higher viscosity and lower calorific value, which have a major bearing on spray formation and initial combustion.  相似文献   

9.
《Biomass & bioenergy》2001,20(1):63-69
The objective of the present study is to reveal the effects of pure coconut oil and coconut oil–diesel fuel blends on the performance and emissions of a direct injection diesel engine. Operation of the test engine with pure coconut oil and coconut oil–diesel fuel blends for a wide range of engine load conditions was shown to be successful even without engine modifications. It was also shown that increasing the amount of coconut oil in the coconut oil–diesel fuel blend resulted in lower smoke and NOx emissions. However, this resulted in an increase in the BSFC. This was attributed to the lower heating value of neat coconut oil fuel compared to diesel fuel.  相似文献   

10.
Disposal of waste tires is one of the most important problems that should be solved. This problem can be solved by considering waste tires for production of hydrogen or fuel for diesel engines. This paper presents the studies on the performance and emission characteristics of a four stroke, four cylinders, naturally aspirated, direct-injected diesel engine running with various blends of waste tire pyrolysis oil (WTPO) with diesel fuel. Fuel properties, engine performance, and exhaust emissions of WTPO and its blends were analyzed and compared with those of petroleum diesel fuel. The experimental results showed that WTPO–diesel blends indicated similar performance with diesel fuel in terms of torque and power output of the test engine. It was found that the blends of pyrolysis oil of waste tire WTPO10 can efficiently be used in diesel engines without any engine modifications.  相似文献   

11.
This paper presents the results obtained of a compression ignition engine (modified to run on spark ignition mode) fuelled with hydrogen–ethanol dual fuel combination with different percentage substitutions of hydrogen (0–80% by volume with an increment of 20%) under variable compression ratio conditions (i.e. 7:1, 9:1 and 11:1) by varying the spark ignition timing at a constant speed of 1500 rpm. The various engine performance parameters studied were brake specific fuel consumption, brake mean effective pressure and brake thermal efficiency. It was found from the present study that for specific ignition timing the brake mean effective pressure and the brake thermal efficiency increases with the increase of hydrogen fraction in ethanol and all hydrogen substitutions showed the maximum increase in brake thermal efficiency and reduction in brake specific fuel consumption value at around 25° CA advanced ignition timing. The best operating conditions were obtained at a compression ratio of 11:1 and the optimum fuel combination was found to be 60–80% hydrogen substitution to ethanol.  相似文献   

12.
Combustion in HCCI engines is a controlled auto ignition of well-mixed fuel, air and residual gas. Since onset of HCCI combustion depends on the auto ignition of fuel/air mixture, there is no direct control on the start of combustion process. Therefore, HCCI combustion becomes unstable rather easily, especially at lower and higher engine loads. In this study, cycle-to-cycle variations of a HCCI combustion engine fuelled with ethanol were investigated on a modified two-cylinder engine. Port injection technique is used for preparing homogeneous charge for HCCI combustion. The experiments were conducted at varying intake air temperatures and air–fuel ratios at constant engine speed of 1500 rpm and P-θ diagram of 100 consecutive combustion cycles for each test conditions at steady state operation were recorded. Consequently, cycle-to-cycle variations of the main combustion parameters and performance parameters were analyzed. To evaluate the cycle-to-cycle variations of HCCI combustion parameters, coefficient of variation (COV) of every parameter were calculated for every engine operating condition. The critical optimum parameters that can be used to define HCCI operating ranges are ‘maximum rate of pressure rise’ and ‘COV of indicated mean effective pressure (IMEP)’.  相似文献   

13.
Homogenous charge compression ignition (HCCI) engines feature high thermal efficiency and ultralow emissions compared to gasoline engines. However, unlike SI engines, HCCI combustion does not have a direct way to trigger the in-cylinder combustion. Therefore, gasoline HCCI combustion is facing challenges in the control of ignition and, combustion, and operational range extension. In this paper, an active fuel design concept was proposed to explore a potential pathway to optimize the HCCI engine combustion and broaden its operational range. The active fuel design concept was realized by real time control of dual-fuel (gasoline and n-heptane) port injection, with exhaust gas recirculation (EGR) rate and intake temperature adjusted. It was found that the cylinderto- cylinder variation in HCCI combustion could be effectively reduced by the optimization in fuel injection proportion, and that the rapid transition process from SI to HCCI could be realized. The active fuel design technology could significantly increase the adaptability of HCCI combustion to increased EGR rate and reduced intake temperature. Active fuel design was shown to broaden the operational HCCI load to 9.3 bar indicated mean effective pressure (IMEP). HCCI operation was used by up to 70% of the SI mode load while reducing fuel consumption and nitrogen oxides emissions. Therefore, the active fuel design technology could manage the right fuel for clean engine combustion, and provide a potential pathway for engine fuel diversification and future engine concept.  相似文献   

14.
In this research, the effects of unleaded iso-octane (base fuel), iso-octane–ethanol blend (E20) and iso-octane–methanol blend (M20) on engine performance were investigated experimentally in a single-cylinder four-stroke spark-ignition engine. The tests were performed by varying the throttle position and engine speed at a constant load of 8 kg. The engine speed was varied from 1200 to 1750 rpm, with changing the throttle position. The results showed that ethanol and methanol addition to unleaded iso-octane increases the engine torque, power and brake-specific fuel consumption (BSFC) in comparison to base fuel. The results also showed that exhaust temperature increases with the increase in engine speed. The thermal efficiency varies from 14.3% to 35.9% for iso-octane, 20.1–30.59% for E20 and (17.64–27.46%) for M20 fuel. It was also found that the volumetric efficiency of M20 and E20 fuels was higher than that of iso-octane in all speed ranges.  相似文献   

15.
This paper describes the procedures of the analysis of pollutant gases, as volatile organic compounds (benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene) emitted by engines, using high-resolution gas chromatography (HRGC). In a broad sense, CI engine burning diesel was compared with B10 and a drastic reduction was observed in the emissions of the aromatic compounds by using B10. Especially for benzene, the reduction of concentrations occurs on the level of about 19.5%. Although a concentration value below 1 μg ml−1 has been obtained, this reduction is extremely significant since benzene is a carcinogenic compound.  相似文献   

16.
Mixtures of hydrogen and methane are considered viable alternative fuels to gasoline due to lower overall pollutant emissions.  相似文献   

17.
This paper investigated the role of microemission characteristics of a diesel engine when CeRuO2 blended with diesel is used as a fuel. The major problem areas for combustion ignition (CI) engines are emissions. A novel microemulsion-based protocol was utilized to disperse the catalysts in the diesel fuel. The fuel was prepared comprising CeO2, Ce0.95Ru0.05O2, Ce0.9Ru0.1O2, and Ce0.8Ru0.2O2 by volume (0, 5, 10, and 20 mole%) was used in a CI engine. The catalyst microemulsion system remains stable upon its addition to the diesel fuel. The results show that the CI engine works well and the power outputs are steady running with the biodiesel blends at different loads. The acquired information were studied and found a decrease in HC, CO, NOx, and soot.  相似文献   

18.
Direct borohydride–hydrogen peroxide fuel cells (DBHPFCs) are attractive power sources for space applications. Although the cathode conditions are known to affect the system performance, the effect of the anode conditions is rarely investigated. Thus, in this study, a DBHPFC system was tested under various anode conditions, such as electrocatalyst, fuel concentration, and stabilizer concentration, to investigate their effects on the system performance. A virtual DBHPFC system was analyzed based on the experimental data obtained from fuel cell tests. The anode electrocatalyst had a considerable effect on the mass and electrochemical reaction rate of the fuel cell system, but had minimal effect on the decomposition reaction rate. The NaBH4 concentration greatly influenced the mass and decomposition reaction rate of the fuel cell system; however, it had minimal impact on the electrochemical reaction rate. The NaOH concentration affected the electrochemical reaction rate, decomposition reaction rate, and mass of the fuel cell system. Therefore, the significant effects of the anode conditions on the electrochemical reaction rate, decomposition reaction rate, and mass of the fuel cell system prompt the need for their careful selection through fuel cell tests and system analysis.  相似文献   

19.
Hydrogen addition is an effective way for improving the performance of spark-ignited (SI) engines at stoichiometric and especially lean conditions. Spark timing also heavily influences the SI engine performance. This paper experimentally investigated the effect of spark timing on performance of a hydrogen-enriched gasoline engine at lean conditions. The experiment was carried out on a four-cylinder, port-injection gasoline engine which was modified to be an electronically controlled hybrid hydrogen–gasoline engine (HHGE) by adding a hydrogen port-injection system on the intake manifolds while keeping the original gasoline injection system unchanged. A hybrid electronic control unit (HECU) was developed to govern the injection timings and durations of hydrogen and gasoline to enforce the timely mixing of hydrogen and gasoline in the intake ports at the expected blending levels and excess air ratios. During the test, the engine speed was fixed at 1400 rpm and the manifolds absolute pressure (MAP) was kept at 61.5 kPa. The hydrogen volume fraction in the intake was increased from 0% to 3% through adjusting the hydrogen injection duration. For a specified hydrogen addition level, gasoline injection duration was reduced to ensure the engine operating at two excess air ratios of 1.2 and 1.4, respectively. The spark timing for a specified hydrogen addition level and excess air ratio was varied from 20 to 50 °CA BTDC with an interval of 2 °CA. The test results showed that the indicated mean effective pressure (Imep) first increased and then decreased with the increase of spark advance. The optimum spark timing for the max. Imep (OST) was retarded for the HHGE at a specified excess air ratio. The max. indicated thermal efficiency appeared at the OST. Flame development period was shortened whereas flame propagation period was prolonged with the decrease of spark advance. The coefficient of variation in indicated mean effective pressure generally gained its minimum value at the OST. HC and NOx emissions were continuously decreased with the retarding of spark timing. However, the effect of spark timing on CO emission was found insignificant.  相似文献   

20.
This study is aimed at investigating the effect of injection system parameters such as injection pressure, injection timing and nozzle tip protrusion on the performance and emission characteristics of a twin cylinder water cooled naturally aspirated CIDI engine. Biodiesel, derived from pongamia seeds through transesterification process, blended with diesel was used as fuel in this work. The experiments were designed using a statistical tool known as Design of Experiments (DoE) based on response surface methodology (RSM). The resultant models of the response surface methodology were helpful to predict the response parameters such as Brake Specific Energy Consumption (BSEC), Brake Thermal Efficiency (BTE), Carbon monoxide (CO), Hydrocarbon (HC), smoke opacity and Nitrogen Oxides (NOx) and further to identify the significant interactions between the input factors on the responses. The results depicted that the BSEC, CO, HC and smoke opacity were lesser, and BTE and NOx were higher at 2.5 mm nozzle tip protrusion, 225 bar of injection pressure and at 30° BTDC of injection timing. Optimization of injection system parameters was performed using the desirability approach of the response surface methodology for better performance and lower NOx emission. An injection pressure of 225 bar, injection timing of 21° BTDC and 2.5 mm nozzle tip protrusion were found to be optimal values for the pongamia biodiesel blended diesel fuel operation in the test engine of 7.5 kW at 1500 rpm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号