首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Applied Thermal Engineering》2003,23(17):2183-2200
A device for the dissipation the heat from the hot side of Peltier pellets in thermoelectric refrigeration, based on the principle of a thermosyphon with phase change is presented. The device design was accomplished by analytic calculations on the base of a semi-empirical formulation and simulations with computational fluids dynamics. In the experimental optimization phase, a prototype of thermosyphon with a thermal resistance of 0.110 K/W has been development, dissipating the heat of a Peltier pellet with the size of 40 × 40 mm, what is an improvement of 36% in the thermal resistance, with regard to the commercial fin dissipater.With the construction of the two prototypes of thermoelectric domestic refrigerators, one of them with the device developed, and the other with a conventional fins dissipater, it could be experimentally proved that the use of thermosyphon with phase change increases the coefficient of performance up to 32%.  相似文献   

2.
In the present study, the results of a cold‐hot water dispenser with a thermoelectric module system (TMS) are presented. The cold‐hot water dispenser with thermoelectric module system consists of a cold water loop, a hot water loop, a coolant loop, and a thermoelectric module. The thermoelectric cooling and heating modules consist of four and two water blocks, nine and three thermoelectric plates, respectively. The cooling and heating capacities obtained from the cold‐hot water dispenser with TMS are compared with those from a conventional cold‐hot water dispenser with a compression refrigeration system (CRS). As compared with the conventional cold‐hot water dispenser with CRS, the cold‐hot water dispenser with TMS can be operated at the minimum cold water temperature of 10 to 13°C and the maximum hot water temperature of 65°C. The obtained results are expected provide guidelines to design cold‐hot water dispensers with TMS.  相似文献   

3.
In this study, a universal microcontroller test system, which is aimed to determine the dynamic parameters of thermoelectric modules, has been designed and realized using a novel test method. For the purpose of this work, the test system has been designed according to a more simplified form of the present formula set, which has been made to accept minimum variables as input to obtain more precise results. As a result, a test system, which can measure the dynamic parameters of a thermoelectric module universally by measuring only the hot side temperature, module operation voltage, module's current and thermoemf values of the module, has been produced. Also, the realized new test system has been used to measure a standard thermoelectric module (Melcor CP 1.4-127-10L) in order to verify its performance.  相似文献   

4.
During the winter months in regions where constant electric power supply cannot be relied upon, power may be derived parasitically from heating stoves. A proportion of heat from these 20–50 kW wood or diesel-heated stoves may be utilized to drive a thermoelectric generator (TEG) consisting of several commercially available low-cost modules. These are Peltier modules operating in a power generating mode and adapted to the low-flux regime coupled with hot side temperatures of 100–300 °C. Two commercially available modules are considered. The generator is then theoretically re-evaluated with the Peltier modules re-designed in order to produce maximum power in a simple and cheap manner allowing easy commercial production using existing technology. A current power target is set at 100 W for a minimum domestic use.  相似文献   

5.
A computational model, which simulates thermal and electric performance of thermoelectric refrigerators, has been developed. This model solves the non-linear system that is made up of the thermoelectric equations and the heat conduction equations providing values for temperature, electric consumption, heat flow and coefficient of performance of the refrigerator. Finite differences method is used in order to solve the system and also semi empirical expressions for convection coefficients.Subsequently a thermoelectric refrigerator with an inner volume of 55 × 10−3 m3 has been designed and tested, whose cold system is composed of a Peltier pellet (50 W of maximum power) and a fan of 2 W. An experimental analysis of its performance in different conditions has been carried out with this prototype, which, in his turn, has been useful for assessing the accuracy of the developed model. The built thermoelectric refrigerator prototype, offers advantages with respect to vapour compression classical technology such as: a more ecological system, more silent and robust and more precise in the control of temperatures which make it suitable for camping vehicles, buses, special transports for electro medicine, etc.  相似文献   

6.
The objective of this research was aimed at conducting an experimental investigation to study the heat sink performance of a new rectangular fins array. Various operating conditions were considered, namely the distance between the fan and the fins, varied from 0 mm to 40 mm, heat supplied to the sink and the fan voltage. It was concluded that a fan installed at 30 mm height from the fins is recommended as the hot side temperature was the lowest. Next a pre-experimentation of small scale prototype of thermoelectric Dehumidifier (TED) was designed and constructed. It was composed of two thermoelectric (TE) cooling modules, MT2-1, 6-127, (two in serial) mounted between the rectangular fin heat exchangers with dimension 140 × 240 × 35 mm. The hot side was cooled by a ventilation fan whereas the air flow on the cold side was free convection. The effect of position of fan was investigation experimentally. Preliminary tests confirmed the good performance of the hot heat sink design for the intended thermoelectric application.  相似文献   

7.
A thermoelectric generator was fitted to the side of a domestic woodstove. The generator was driven using one or more thermoelectric modules designed to give significant power at a reasonable cost. The thermoelectric generator was air cooled by natural convection using a commercially available heat sink. Testing was undertaken under a controlled woodstove firing rate and temperatures, and open circuit voltages were monitored over extended periods. The maximum steady state matched load power was 4.2 W using a single module. The use of multiple modules with a single heat sink was found to reduce the total power output relative to the single module case as a result of reduced hot to cold surface temperature differences.  相似文献   

8.
Manufacturers of commercial thermoelectric modules provide datasheets of the modules including information and graphs about the performance attained at several working conditions. Details about internal parameters are not made available to customers, because in the broad majority of the cases they are not necessary. However, when developing non-standard applications or conducting research projects it is sometimes necessary to make the modules work in different conditions than those shown in the performance curves. This paper shows a methodology to extract thermoelectric internal parameters from the information provided by performance curves, hence allowing scientists to predict the performance of the module at any working condition. The method is based on the basic equations that link thermal and electrical dynamics in which some parameters must be estimated. As a result it is possible to predict the behavior of the modules if they are operated in a non-standard way. One good example is to simulate how a module designed for cooling applications will behave if used as a Seebeck module for power generation. The proposed methodology has been successfully applied to a commercial Peltier module for which the behavior as a thermoelectric generator was simulated and then tested experimentally, attaining very similar results.  相似文献   

9.
A novel combined thermoelectric power generation and water desalination system is described with a system schematic. The proposed system utilises low grade thermal energy to heat thermoelectric generators for power generation and water desalination. A theoretical analysis presents the governing equations to estimate the systems performance characteristics combined with experimental validation. Experimental set-up consists of an electric heat source, thermoelectric modules, heat pipes, a heat sink and an evaporator vessel. Four heat pipes are embedded in a heat spreader block to passively cool the bottom side of the thermoelectric cells. The condenser of these four heat pipes is immersed in a pool of saline water stored in an evaporation vessel which is maintained at sub-atmospheric pressure. The liquid to vapour phase change cooling method achieve low saturation temperature and offers a high heat transfer coefficient for the cooling of the thermoelectric generators. At the same time this method utilises the low temperature heat extracted from the cold side of the thermoelectric generator for water desalination. It was observed that at low saturation temperatures greater heat flux could be supplied to the thermoelectric generators with less heat losses to the atmosphere.  相似文献   

10.
Thermoelectric cooling (TEC) reverses the electrical energy to temperature caused by the Peltier effect, where a temperature difference occurs between two conductors, that is, hot and cold junctions. This article presents the enhanced heat transfer of a TEC module using a TEC1-12710 model integrated with a wavy channel heat sink using ferrofluid as a coolant under continuous and pulsating flows, where the differences in the distance of the magnetic field are considered. Square permanent magnets measuring 30 mm × 20 mm × 4 mm (width × length × height) are used to transmit a magnetic field to the heat sink and then tested under a magnetic distance of 10–30 mm. The test is performed at a water flow rate from 0.0083 to 0.028 kg/s and supplied with a constant TEC voltage of 12 V. By applying a magnetic field to the TEC module with a magnetic distance of 20 mm and a ferrofluid concentration ratio of 0.015%, the cooling efficiency increases by approximately 18.64%. Hence, using pulsating flow may improve thermal efficiency by approximately 23%. The results show an exponential increase in the cooling efficiency when both passive and active cooling techniques are used.  相似文献   

11.
A prototype dehumidifier was designed and built based on thermoelectric cooling technology. A computational calculation model based on electric analogy was used in the device's design and optimisation (AERO), meaning that effects occurring inside the equipment, such as heat transfer, thermoelectric effects and the phase change which occurs during condensation and evaporation could be solved simultaneously. The thermoelectric dehumidifier prototype was built after performing several simulations using this calculation model. Numerous tests were carried out in order to optimise the Peltier pellet and fan supply voltages in experimental conditions. The prototype was also compared to conventional vapour-compression systems, thermoelectricity showing significant potential in the field.  相似文献   

12.
Thermoelectric modules are currently used both in Peltier cooling and in Seebeck mode for electricity generation. The developments experienced in both cases depend essentially on two factors: the thermoelectric properties of the materials that form these elements (mainly semiconductors), and the external structure of the semiconductors. Figure of Merit Z is currently the best way of measuring the efficiency of semiconductors, as it relates to the intrinsic parameters of the semiconductor: Seebeck coefficient, thermal resistance, and thermal conductivity. When it comes to evaluating the complete structure, the Coefficient of Performance (COP) is used, relating the electrical power to the thermal power of the module. This paper develops a Thermoelectric Generator (TEG) structure which allows minimising the response time of the thermoelectric device, obtaining short working cycles and, therefore, a higher working frequency.  相似文献   

13.
设计了一种针对高温烟气的圆筒式温差发电装置,在装置中设置分流桶增强烟气侧的换热效果。利用Ansys Fluent软件对装置的温度场、速度场及排气压降进行仿真模拟,分析了不同分流桶的桶直径、端盖孔直径和分流孔直径对热电模块冷热端温度分布的影响。仿真结果表明:温差发电系统集热器通道中设置分流桶可以实现高效温差发电,分流桶端盖未开孔时装置的换热效果优于端盖开孔结构;适当减小分流孔直径或增大分流桶直径会提升热电模块的冷热端温差,分流孔直径为2 mm时的换热效果最优,分流桶直径过大会使热电模块温度分布及温差的均匀性降低;系统烟气压降会随着分流孔直径的增大或分流桶直径的减小而降低。  相似文献   

14.
The main objective of this study is to design and build an affordable solar thermoelectric refrigerator for the Bedouin people (e.g. deserts) living in remote parts of Oman where electricity is still not available. The refrigerator could be used to store perishable items and facilitate the transportation of medications as well as biological material that must be stored at low temperatures to maintain effectiveness. The design of the solar-powered refrigerator is based on the principles of a thermoelectric module (i.e., Peltier effect) to create a hot side and a cold side. The cold side of the thermoelectric module is utilized for refrigeration purposes; provide cooling to the refrigerator space. On the other hand, the heat from the hot side of the module is rejected to ambient surroundings by using heat sinks and fans. The designed solar thermoelectric refrigerator was experimentally tested for the cooling purpose. The results indicated that the temperature of the refrigeration was reduced from 27 °C to 5 °C in approximately 44 min. The coefficient of performance of the refrigerator (COPR) was calculated and found to be about 0.16.  相似文献   

15.
A solar-driven thermoelectric cooling module with a waste heat regeneration unit designed for green building applications is investigated in this paper. The waste heat regeneration unit consisting of two parallel copper plates and a water channel with staggered fins is installed between the solar cells and the thermoelectric cooler. The useless solar energy from the solar cells and the heat dissipated from the thermoelectric cooler can both be removed by the cooling water such that the performance of the cooling module is elevated. Moreover, it makes engineering sense to take advantage of the hot water produced by the waste heat regeneration unit during the daytime. Experiments are conducted to investigate the cooling efficiency of the module. Results show that the performance of the combined module is increased by increasing the flow rate of the cooling water flowing into the heat regeneration water channel due to the reductions of the solar cell temperature and the hot side temperature of the thermoelectric coolers. The combined module is tested in the applications in a model house. It is found that the present approach is able to produce a 16.2 °C temperature difference between the ambient temperature and the air temperature in the model house.  相似文献   

16.
在研究单层ZrNCl和HfNCl材料热电性能的基础上,搭建温差发电模型,研究不同规格温差发电模块的输出性能,然后与其他学者研究的温差发电模型及热电材料的热电转换效率进行对比分析.结果表明:在低温区和中温区,单层ZrNCl的热电转换效率更高.温差发电模块的输出功率随温差发电模块横截面积和热电单元对数的增大而增大.单层Zr...  相似文献   

17.
《Journal of power sources》1998,73(2):193-198
A procedure is developed to assess the potential of thermoelectric modules when used for electrical power generation. The generating performance of a thermoelectric module is evaluated in terms of its power output, conversion efficiency and reliability, while the potential for improving its performance is investigated based upon the power-per-area, cost-per-watt and manufacture quality factor. The methods employed in determining these parameters are described and used to evaluate several commercially available modules. The results show that a thermoelectric module is a promising device for low temperature waste heat recovery.  相似文献   

18.
Effect of air gap on the performance of building-integrated photovoltaics   总被引:1,自引:0,他引:1  
Ventilation of photovoltaic (PV) modules installed over or beside a building envelope can reduce the module temperature and increase the electrical conversion efficiency. A computational fluid dynamics (CFD) method has been used to assess the effect of the size of air gap between PV modules and the building envelope on the PV performance in terms of cell temperature for a range of roof pitches and panel lengths and to determine the minimum air gap that is required to minimise PV overheating. It has been found that the mean PV temperature and the maximum PV temperature associated with hot spots decrease with the increase in pitch angle and air gap. The mean PV temperature also decreases with increasing panel length for air gaps greater than or equal to 0.08 m whereas the maximum PV temperature generally increases with panel length. To reduce possible overheating of PV modules and hot spots near the top of modules requires a minimum air gap of 0.12–0.15 m for multiple module installation and 0.14–0.16 m for single module installation depending on roof pitches.  相似文献   

19.
In this case study, a system to recover waste heat comprised 24 thermoelectric generators (TEG) to convert heat from the exhaust pipe of an automobile to electrical energy has been constructed. Simulations and experiments for the thermoelectric module in this system are undertaken to assess the feasibility of these applications. A slopping block is designed on the basis of simulation results to uniform the interior thermal field that improves the performance of TEG modules. Besides simulations, the system is designed and assembled. Measurements followed the connection of the system to the middle of an exhaust pipe. Open circuit voltage and maximum power output of the system are characterized as a function of temperature difference. Through these simulations and experiments, the power generated with a commercial TEG module is presented. Overview this case study and our previous work, the results establish the fundamental development of low-temperature waste heat thermoelectric generator system that enhances the TEG efficiency for vehicles.  相似文献   

20.
This article reports on the design and performance analysis of a solar thermoelectric power generation plant (STEPG). The system considers both truncated compound parabolic collectors (CPCs) with a flat receiver and conventional flat-plate collectors, thermoelectric (TE) cooling and power generator modules and appropriate connecting pipes and control devices. The design tool uses TRNSYS IIsibat-15 program with a new component we developed for the TE modules. The main input data of the system are the specifications of TE module, the maximum hot side temperature of TE modules, and the desired power output. Examples of the design using truncated CPC and flat-plate collectors are reported and discussed for various slope angle and half-acceptance angle of CPC. To minimize system cost, seasonal adjustment of the slope angle between 0° and 30° was considered, which could give relatively high power output under Bangkok ambient condition. Two small-scale STEPGs were built. One of them uses electrical heater, whereas the other used a CPC with locally made aluminum foil reflector. Measured data showed reasonable agreement with the model outputs. TE cooling modules were found to be more appropriate. Therefore, the TRNSYS software and the developed TE component offer an extremely powerful tool for the design and performance analysis of STEPG plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号