首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Heat transfer measurements from a rotating two-pass square channel with two opposite leading and trailing walls roughened by 45° parallel ribs arranged in the staggered manner are performed to examine the effects of Reynolds (Re), rotation (Ro) and buoyancy (Bu) numbers on local and area-averaged Nusselt numbers (Nu and Nu¯). Full-field Nu distributions over the two rib-roughened leading and trailing walls are measured at the conditions of 4000 ? Re ? 16,000, 0 ? Ro ? 0.8 and 0.0015 ? Bu ? 0.93 (0.05 ? Δρ/ρ ? 0.1) using the infrared thermography which allows for the detailed examination of the Coriolis and rotating buoyancy effects on Nu distributions over the rotating ribbed surface. Selected heat transfer data in term of Nu ratio between rotating and stationary levels illustrates the influences of rotation on local and area-averaged heat transfer performances. Area-averaged Nu¯ for the turn region and the inlet and outlet ribbed legs of the rotating two-pass channel are parametrically analyzed to devise a set of empirical heat transfer correlations that permits the evaluation of the interdependent and individual effects of Re, Ro and Bu on Nu¯.  相似文献   

2.
Centerline heat transfer measurements along two opposite ribbed walls in three rotating rectangular ducts roughened by 45° staggered ribs with channel aspect ratios (AR) of 1:1, 2:1 and 4:1 are performed at Reynolds (Re), rotation (Ro) and buoyancy (Bu) numbers in the ranges of 5000–30,000, 0–2, and 0.005–8.879, respectively. These channel geometries are in common use as the internal cooling passages of a gas turbine rotor blade and the tested Ro and Bu ranges are considerably extended from the previous experiences. This study focuses on the heat transfer characteristics in response to the change of AR under the parameter ranges examined. With zero-rotation (Ro = 0), the local Nusselt numbers (Nu0) along the centerlines of two opposite ribbed walls increase as AR increases due to the increased rib-height to channel-height ratio. The Bu impact on heat transfer appears to be AR dependent, i.e. the increase of Bu elevates Nusselt number ratios Nu/Nu0 in the square channel but impairs heat transfer in the rectangular channels of AR = 2 and 4. Acting by the Coriolis effect alone, all the leading edge Nu values in the present Ro range are lower than the zero-rotation references but started to recover as Ro increases from 0.1 in the channels of AR = 1, 2 and from 0.3 in the channel of AR = 4. The trailing edge Nu/Nu0 ratios increase consistently from unity as Ro increases but their responses toward the increase of AR are less systematic than those found along the leading edge. The above findings, with the aids of extended Ro and Bu ranges achieved by this study, serve as the original contributions for this technical community. The Nu/Nu0 ratios in the rotating channels of AR = 1, 2, and 4 fall in the ranges of 0.6–2.2, 0.5–2.7, and 0.5–2.1, respectively. A set of heat transfer correlations is derived to represent all the heat transfer data in the periodically developed flow regions of three rotating ducts.  相似文献   

3.
An experimental study of heat transfer in a radially rotating rectangular channel of aspect ratio 1/2 with two opposite walls roughened by 45° staggered ribs is performed. Heat transfer distributions along centerlines of two rib-roughened surfaces are measured for the radially outward airflow at test conditions of Reynolds number (Re), rotation number (Ro) and density ratio (Δρ/ρ) in the ranges of 5000–15,000, 0–2 and 0.07–0.28. The rotating test rig permits the generation of heat transfer data with Ro considerably higher than previous data ranges. A selection of experimental data illustrates the individual and interactive influences of Re, Ro and buoyancy number (Bu) on local heat transfer with two channel orientations of 0° and 45°. With Ro varying from 0.1 to 2, heat transfer ratios between rotating and static channels on the stable and unstable rib-roughened surfaces with 0° (45°) of channel orientation are in the ranges of 0.5–1.42 (0.5–1.49) and 1.08–2.73 (1.06–2.21) respectively. A set of heat transfer correlations for the test geometry with channel orientations of 0° is derived to evaluate the local Nusselt number (Nu) in the periodically developed region with Re, Ro and Bu as the controlling flow parameters.  相似文献   

4.
An experimental study of heat transfer and pressure drop in a rectangular channel roughened by scaled surfaces on two opposite walls with flows directed in the forward and downward directions for Reynolds numbers (Re) in the range of 1500  Re  15,000 was performed. Nusselt number ratios between the scale-roughened and smooth-walled ducted flows (Nu/Nu) were in the range of 7.4–9.2 and 6.2–7.4 for laminar forward and downward flows respectively. The Nu/Nu values for turbulent developed flows in the scale-roughened channel with forward and downward flows were about 4.5 and 3 respectively. A comparison of present data with reported results using different types of surface roughness demonstrated the better thermal performances of present scale-roughened channel with forward flow at conditions of Re > 10,000. Experimental correlations of heat transfer and friction coefficient were derived for the present scale-roughened rectangular channel.  相似文献   

5.
This paper investigates the local heat transfer of a co-axial rotating cylinder. In the inner flow field of the rotating cylinder, the dimensionless parameters include the rotational Reynolds number (ReΩ) and buoyancy parameter (Gr). The test rig is designed to make the rotating in the inner cylinder and stationary in the outer cylinder. The local temperature distributions of the inner and outer cylinder on axial direction were measured. Under the experimental condition, whereas the ranges of the rotational Reynolds number are 2400  ReΩ  45,000. Experimental results reveal that the rotational Reynolds number's increase is with the heat transfer coefficient distributions increase types. Finally, the local heat transfer rate on the wall are correlated and compared with that in the existing literature.  相似文献   

6.
A penalty finite element method based simulation is performed to analyze the influence of various walls thermal boundary conditions on mixed convection lid driven flows in a square cavity filled with porous medium. The relevant parameters in the present study are Darcy number (Da = 10?5 ? 10?3), Grashof number (Gr = 103 ? 105), Prandtl number (Pr = 0.7–7.2), and Reynolds number (Re = 1–102). Heatline approach of visualizing heat flow is implemented to gain a complete understanding of complex heat flow patterns. Patterns of heatlines and streamlines are qualitatively similar near the core for convection dominant flow for Da = 10?3. Symmetric distribution in heatlines, similar to streamlines is observed irrespective of Da at higher Gr in natural convection dominant regime corresponding to smaller values of Re. A single circulation cell in heatlines, similar to streamlines is observed at Da = 10?3 for forced convection dominance and heatlines are found to emanate from a large portion on the bottom wall illustrating enhanced heat flow for Re = 100. Multiple circulation cells in heatlines are observed at higher Da and Gr for Pr = 0.7 and 7.2. The heat transfer rates along the walls are illustrated by the local Nusselt number distribution based on gradients of heatfunctions. Wavy distribution in heat transfer rates is observed with Da ? 10?4 for non-uniformly heated walls primarily in natural convection dominant regime. In general, exponential variation of average Nusselt numbers with Grashof number is found except the cases where the side walls are linearly heated. Overall, heatlines are found to be a powerful tool to analyze heat transport within the cavity and also a suitable guideline on explaining the Nusselt number variations.  相似文献   

7.
In this paper, mixed convection flow and heat transfer around a long cylinder of square cross-section under the influence of aiding buoyancy are investigated in the vertical unconfined configuration (Reynolds number, Re = 1–40 and Richardson number, Ri = 0–1). The semi-explicit finite volume method implemented on the collocated grid arrangement is used to solve the governing equations along with the appropriate boundary conditions. The onset of flow separation occurs between Re = 1–2, between Re = 2–3 and between Re = 3–4 for Ri = 0, 0.5 and 1, respectively. The flow is found to be steady for the range of conditions studied here. The friction, pressure and total drag coefficients are found to increase with Richardson number, i.e., as the influence of aiding buoyancy increases drag coefficients increase at the constant value of the Reynolds number. The temperature field around the obstacle is presented by isotherm contours at the Prandtl number of 0.7 (air). The local and average Nusselt numbers are calculated to give a detailed study of heat transfer over each surface of the square cylinder and an overall heat transfer rate and it is found that heat transfer increases with increase in Reynolds number and/or Richardson number. The simple expressions for the wake length and average cylinder Nusselt number are obtained for the range of conditions covered in this work.  相似文献   

8.
A transient liquid crystal experiment was performed to study the heat transfer characteristic of impingement cooling with outflow film on the leading edge of turbine blades under rotating conditions. In the experiments, the angles between the jet direction and rotating shaft were 0°, 30°, and 45°, respectively. The impinging jet Reynolds number, based on the diameter of the impingement hole, ranged from 2000 to 12,000. The rotation number Ro (Ωd/u) ranged from 0 to 0.278. The relative impingement distance was fixed at 2. The results showed that, due to the effect of rotation, the spreading rate of the jet flow was enhanced and the heat transfer was weakened for all Reynolds numbers. For the condition of Re = 4000 and Ro = 0.139 with corresponding angles θ = 0°, 30°, 45°, the Nusselt number of the stagnation point decreased by 33%, 30%, and 35%, respectively, compared to the stationary results. Furthermore, for the corresponding angles θ = 30° and 45°, the location of the stagnation point is offset 0.6d (jet impingement hole diameter) and 0.9d down, respectively, when Ro = 0.139. The average Nusselt numbers on the suction surface and the pressure surface both decreased with increased rotating speed. Moreover, the reduction of the average Nusselt number on the pressure surface was larger than that on the suction surface. At Ro = 0.139, the average Nusselt number on the suction surface decreased less than 10% for all three angles, while on the pressure surface, the decrease was almost 20% compared to the result for Ro = 0.  相似文献   

9.
Forced convection heat transfer to incompressible power-law fluids from a heated elliptical cylinder in the steady, laminar cross-flow regime has been studied numerically. In particular, the effects of the power-law index (0.2 ? n ? 1.8), Reynolds number (0.01 ? Re ? 40), Prandtl number (1 ? Pr ? 100) and the aspect ratio of the elliptic cylinder (0.2 ? E ? 5) on the average Nusselt number (Nu) have been studied. The average Nusselt number for an elliptic cylinder shows a dependence on the Reynolds and Prandtl numbers and power-law index, which is qualitatively similar to that for a circular cylinder. Thus, heat transfer is facilitated by the shear-thinning tendency of the fluid, while it is generally impeded in shear-thickening fluids. The average Nusselt number values have also been interpreted in terms of the usual Colburn heat transfer factor (j). The functional dependence of the average Nusselt number on the dimensionless parameters (Re, n, Pr, E) has been presented by empirically fitting the numerical results for their easy use in process design calculations.  相似文献   

10.
A detailed heat transfer measurement over a convex-dimpled surface of impinging jet-array with three eccentricities (E/H) between jet-centre and dimple-centre is performed. These surface dimples considerably modify heat transfers from smooth-walled scenarios due to different impinging topologies for jet array with modified inter-jet reactions. Heat transfer variations caused by adjusting jet Reynolds number (Re) and separation distance (S/Dj) over the ranges of 5000  Re  15,000 and 0.5  S/Dj  11 with three eccentricities of E/H = 0, 1/4 and 1/2 are examined. A selection of experimental data illustrates the isolated and interactive influences of Re, S/Dj and E/H on local and spatially averaged heat transfers. In conformity with the experimentally revealed heat transfer physics, a regression-type analysis is performed to generate a set of heat transfer correlations, which permit the evaluations of spatially averaged Nusselt numbers over central jet region of dimpled impinging surface.  相似文献   

11.
Momentum and heat transfer characteristics of a semi-circular cylinder immersed in unconfined flowing Newtonian fluids have been investigated numerically. The governing equations, namely, continuity, Navier–Stokes and energy, have been solved in the steady flow regime over wide ranges of the Reynolds number (0.01 ? Re ? 39.5) and Prandtl number (Pr ? 100). Prior to the investigation of drag and heat transfer phenomena, the critical values of the Reynolds number for wake formation (0.55 < Rec < 0.6) and for the onset of vortex shedding (39.5 < Rec < 40) have been identified. The corresponding values of the lift coefficient, drag coefficient, and Strouhal number are also presented. After establishing the limit of the steady flow regime, the influence of the Reynolds number (0.01 ? Re ? 39.5) and Prandtl number (Pr = 0.72, 1, 10, 50 and 100) on the global flow and heat transfer characteristics have been elucidated. Detailed kinematics of the flow is investigated in terms of the streamline and vorticity profiles and the variation of pressure coefficient in the vicinity of the cylinder. The functional dependence of the individual and total drag coefficients on the Reynolds number is explored. The Nusselt number shows an additional dependence on the Prandtl number. In addition, the isotherm profiles, local Nusselt number (NuL) and average Nusselt number (Nu) are also presented to analyze the heat transfer characteristic of a semi-circular cylinder in Newtonian media.  相似文献   

12.
The effects of the Reynolds and Prandtl numbers on the rate of heat transfer from a square cylinder are investigated numerically in the unsteady two-dimensional periodic flow regime, for the range of conditions 60 ? Re ? 160 and 0.7 ? Pr ? 50 (the maximum value of Peclet number being 4000). A semi-explicit finite volume method has been used on a non-uniform collocated grid arrangement to solve the governing equations. Using the present numerical results, simple heat transfer correlations are obtained for the constant temperature and constant heat flux conditions on the solid square cylinder. In addition, the variation of the time averaged local Nusselt number on the each face of the obstacle and representative isotherm plots are presented to elucidate the role of Prandtl number on heat transfer in the unsteady flow regime.  相似文献   

13.
The governing equations describing the momentum and heat transfer phenomena of power-law non-Newtonian fluids over a heated square cylinder at 45° of incidence in the two-dimensional (2-D) steady flow regime are solved numerically. Extensive results on the detailed structure of the flow and temperature fields as well as on the gross engineering parameters are presented over the following ranges of conditions: 0.2 ? n ? 1; 0.1 ? Re ? 40 and 0.7 ? Pr ? 100. At low Reynolds numbers, the flow remains attached to the surface of the cylinder. This seems to occur for all values of power-law index, at least up to about Re = 1. On the other hand, twin standing vortices were seen to form at Re = 10 for all values of power-law index considered herein. The influence of the Reynolds number and power-law index is delineated on the detailed structure of the flow field (streamlines), wake characteristics and surface pressure distribution as well as on the value of drag coefficients. Similarly, the effect of Prandtl number is studied on forced convective heat transfer for the two commonly encountered boundary conditions, namely, constant temperature or constant heat flux prescribed on the surface of the cylinder. Using the computed numerical results, simple heat transfer correlations are obtained in terms of the Nusselt number as a function of the pertinent governing parameters thereby enabling the prediction of the rate of heat transfer between the fluid and the immersed cylinder. In addition, variation of the local Nusselt number on the surface of the inclined of square cylinder and representative isotherm plots are also presented to elucidate the effect of Reynolds number, Prandtl number and power-law index on the heat transfer phenomenon.  相似文献   

14.
15.
Blockage ratio effects on heat transfer in 1:4 AR channels with developing flow is experimentally determined. The blockage ratios (e/Dh) were 0.078 and 0.156. Reynolds numbers up to 40 K and rotational speeds up to 400 rpm were considered. The rotation number (Ro) and local buoyancy parameter (Box) were extended to 0.65 and 1.5, respectively. The entrance dominates over rotation on the trailing surface first pass. The leading surface is dominated by rotation. Rotation effects are reduced by the ribs and heat transfer is similar for both walls in the second pass. Rotation effects were similar for both blockage ratios. The correlations show that the buoyancy parameter is useful to predict heat transfer in the extended range.  相似文献   

16.
Numerical methods are used to investigate the transient heat transfer from an oblate/prolate spheroid to a steady stream of viscous, incompressible fluid. The temperature of the spheroid is considered spatially uniform but not constant in time. The momentum and heat balance equations were solved numerically in oblate/prolate spheroidal coordinates system. The solutions span the parameter ranges 10 ? Re ? 100 (for the oblate spheroid), 10 ? Re ? 200 (for the prolate spheroid), Pr = 1, 10 and axis ratio ε, 0.1 ? ε ? 0.9. The computations were focused on the influence of the axis ratio and volume heat capacity ratio on the heat transfer rate.  相似文献   

17.
This work experimentally studied heat transfer associated with an impinging jet onto a rotating heat sink. Air was used as the impinging coolant, and a square Al-foam heat sink was adopted. The variable parameters were the jet Reynolds number (Re), the relative nozzle-to-foam tip distance (C/d), the rotational Reynolds number (Rer) and the relative side length of the square heat sink (L/d). The effects of Re, C/d, Rer and L/d on the dimensionless temperature distributions and the average Nusselt number were considered. For a stationary system, the results reveal that the average Nusselt number (Nu0) with Al-foam was two to three times that without Al-foam. Nu0 increased with Re. A larger L/d responded to a larger Nu0 based on the same jet flow rate. The effect of C/d on Nu0 was negligible herein. For a rotating system, when Re and L/d were small and C/d was large, the average Nusselt number (NuΩ) increased considerably with Rer. Additionally, for NuΩ/Nu0 ? 1.1, the results suggest that rotation was substantial at Rer/Re ? 1.13 when L/d = 4.615 with C/d = 0–5 and at Rer/Re ? 1.07 when L/d = 3.0 with C/d = 0–5. For L/d = 2.222, rotation was substantial at Rer/Re ? 1.44 when C/d = 0 and was always substantial when C/d ? 1.  相似文献   

18.
The present numerical study deals with mixed convection flows within square enclosures filled with porous media. The influence of various thermal boundary conditions on bottom and side walls based on thermal aspect ratio (A) is investigated for a wide range of parameters (1 ? Re ? 100, 0.015 ? Pr ? 7.2, 10?5 ? Da ? 10?3 and 103 ? Gr ? 105). A penalty finite element method with bi-quadratic elements has been used to investigate the results in terms of streamlines, isotherms and heatlines and average Nusselt numbers. Lid driven effect is dominant at low Darcy number (Da = 10?5), whereas buoyancy driven effect is dominant at high Darcy numbers (Da = 10?4 and Da = 10?3) for Re = 1. Asymmetric pattern is observed in isotherms and heatlines for Re = 100. It is found that thermal gradient is high at the center of the bottom wall for A = 0.1 due to large dense heatlines at that zone and that is low for A = 0.9 irrespective of Re, Pr and Gr. Overall heat transfer rates are higher for A = 0.1 compared to other thermal aspect ratios (A = 0.5, A = 0.9) irrespective of Darcy number, Prandtl number and Reynolds number.  相似文献   

19.
A comprehensive analysis based on the irreversibilities associated with the energy flow and entropy generation is highly essential for the optimization of thermal systems. Entropy generation during mixed convection process has been studied in entrapped triangular cavities for moving horizontal walls involving isothermally hot inclined walls and cold horizontal walls (case 1) or isothermally cold inclined walls and hot horizontal walls (case 2). Overall it is found that, Re = 100 may be preferred over Re → 0, Re = 1 and Re = 10 at Pr = 0.026 and 7.2, Gr = 103  105 within the cavities, irrespective of the cases. In addition to Re = 100, Re = 10 may be optimal for the upper cavity with case 1 and lower cavity with case 2 at Gr ≈ 105 (higher Gr regime) and Pr = 7.2 based on moderate heat transfer rates.  相似文献   

20.
Forced convection heat transfer characteristics of a cylinder (maintained at a constant temperature) immersed in a streaming power-law fluids have been studied numerically in the two-dimensional (2-D), unsteady flow regime. The governing equations, namely, continuity, momentum and thermal energy, have been solved using a finite volume method based solver (FLUENT 6.3) over wide ranges of conditions (power law index, 0.4 ? n ? 1.8; Reynolds number, 40 ? Re ? 140; Prandtl number, 1 ? Pr ? 100). In particular, extensive numerical results elucidating the influence of Reynolds number, Prandtl number and power-law index on the isotherm patterns, local and average Nusselt numbers and their evolution with time are discussed in detail. Over the ranges of conditions considered herein, the nature of flow is fully periodic in time. The heat transfer characteristics are seen to be influenced in an intricate manner by the value of the Reynolds number (Re), Prandtl number (Pr) and the power-law index (n). Depending upon the value of the power-law index (n), though the flow transits from being steady to unsteady somewhere in the range ~33 < Re < 50, the fully periodic behavior is seen only beyond the critical value of the Reynolds number (Re). As expected, the average Nusselt number increases with an increase in the values of Reynolds and/or Prandtl numbers, irrespective of the value of the flow behavior index. A strong influence of the power-law index on both local and time-averaged Nusselt numbers was observed. Broadly, all else being equal, shear-thinning behavior (n < 1) promotes heat transfer whereas shear-thickening behavior (n > 1) impedes it. Furthermore, this effect is much more pronounced in shear-thinning fluids than that in shear-thickening fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号