首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new method to produce high purity hydrogen using reactions of aluminum and sodium borohydride with aqueous alkaline solutions is described. This process mainly consumes water and aluminum (or its alloys) which are cheaper raw materials than the borohydride. As a consequence, this process could be competitive for in situ production of hydrogen. Moreover, a synergistic effect has been observed in hydrogen production rates and yields combining aluminum or aluminum alloys with sodium borohydride in aqueous solutions. Good results have been obtained for powders of Al, Al/Si and Al/Co alloys. The development of this idea could improve yields and reduce costs in power units based on fuel cells which use borohydride as raw material for hydrogen production.  相似文献   

2.
Hydrogen production from the reaction of aluminum powder with liquid water is investigated for nano- and micron-sized spherical aluminum powders over the 20–200 °C temperature range. The maximum hydrogen production rate increases with increasing temperature and decreasing particle size, consistent with a surface reaction controlled by Arrhenius kinetics. The maximum hydrogen production rate normalized by surface area is universal, and an expression is proposed that predicts the maximum rate for variable powder sizes and temperatures. The hydrogen yield increases with increasing temperature and decreasing particle size. Ultrasonic agitation of the mixture increases the hydrogen production rate and total hydrogen yield, and appears to be a promising reaction-enhancing technique. The finite hydrogen yield observed for larger particles and lower temperatures suggests that the reaction is inhibited after it progresses a certain depth into the particles, here termed the penetration thickness. The penetration thickness increases with temperature and is independent of particle size.  相似文献   

3.
This paper investigates the feasibility of electrolytic hydrogen production for the transport sector during off-peak periods in Ontario. This analysis is based on the existing electricity system infrastructure and its planned future development up to 2025. First, a simplified but realistic zonal based model for Ontario's electricity transmission network is developed. Then, based on Ontario's Integrated Power System Plan (IPSP), a zonal pattern of generation capacity procurement in Ontario from 2008 to 2025 is proposed, specifying the total effective generation capacity in each zone that contributes to base-load energy. Finally, an optimization model is developed to find the optimal size of hydrogen production plants to be developed in different zones, as well as optimal hydrogen transportation routes to achieve a feasible hydrogen economy penetration in Ontario up to 2025. The proposed model is shown to be an effective planning tool for electrolysis based hydrogen economy studies. The results of the present study demonstrate that the present and projected electricity grid in Ontario can be optimally exploited for hydrogen production, achieving 1.2–2.8% levels of hydrogen economy penetration by 2025 without any additional grid or power generation investments beyond those currently planned.  相似文献   

4.
The hydrogen economy is defined as the industrial system in which one of the universal energy carriers is hydrogen (the other is electricity) and hydrogen is oxidized to water that may be reused by applying an external energy source for dissociation of water into its component elements hydrogen and oxygen. There are three different primary energy-supply system classes which may be used to implement the hydrogen economy, namely, fossil fuels (coal, petroleum, natural gas, and as yet largely unused supplies such as shale oil, oil from tar sands, natural gas from geo-pressured locations, etc.), nuclear reactors including fission reactors and breeders or fusion nuclear reactors over the very long term, and renewable energy sources (including hydroelectric power systems, wind-energy systems, ocean thermal energy conversion systems, geothermal resources, and a host of direct solar energy-conversion systems including biomass production, photovoltaic energy conversion, solar thermal systems, etc.). Examination of present costs of hydrogen production by any of these means shows that the hydrogen economy favored by people searching for a non-polluting gaseous or liquid energy carrier will not be developed without new discoveries or innovations. Hydrogen may become an important market entry in a world with most of the electricity generated in nuclear fission or breeder reactors when high-temperature waste heat is used to dissociate water in chemical cycles or new inventions and innovations lead to low-cost hydrogen production by applying as yet uneconomical renewable solar techniques that are suitable for large-scale production such as direct water photolysis with suitably tailored band gaps on semiconductors or low-cost electricity supplies generated on ocean-based platforms using temperature differences in the tropical seas.  相似文献   

5.
Production of hydrogen using aluminum and aluminum alloys with aqueous alkaline solutions is studied. This process is based on aluminum corrosion, consuming only water and aluminum which are cheaper raw materials than other compounds used for in situ hydrogen generation, such as chemical hydrides. In principle, this method does not consume alkali because the aluminate salts produced in the hydrogen generation undergo a decomposition reaction that regenerates the alkali. As a consequence, this process could be a feasible alternative for hydrogen production to supply fuel cells. Preliminary results showed that an increase of base concentration and working solution temperature produced an increase of hydrogen production rate using pure aluminum. Furthermore, an improvement of hydrogen production rates and yields was observed varying aluminum alloys composition and increasing their reactive surface, with interesting results for Al/Si and Al/Co alloys. The development of this idea could improve yields and reduce costs in power units based on fuel cells which use hydrides as raw material for hydrogen production.  相似文献   

6.
Hydrogen is currently gaining much attention as a possible future substitute for oil in the transport sector. Hydrogen is not a primary energy source, but can be produced from other sources of energy. A future hydrogen economy will need the establishment of new infrastructures for producing, storing, distributing, dispensing and using hydrogen. Hydrogen can be produced in large-scale centralized facilities or in small-scale on-site systems. Large-scale production requires distribution in pipelines or trucks. A major challenge is to plan the new infrastructures to approach an even safer society regarding safe use of hydrogen. The paper will, on the basis of some scenarios for hydrogen deployment, highlight and discuss safety aspects related to future hydrogen economy infrastructures.  相似文献   

7.
Solar hydrogen production from direct photoelectrochemical (PEC) water splitting is the ultimate goal for a sustainable, renewable and clean hydrogen economy. While there are numerous studies on solving the two main photoelectrode (PE) material issues i.e. efficiency and stability, there is no standard photocell or photoreactor used in the study. The main requirement for the photocell or photoreactor is to allow maximum light to reach the PE. This paper presents an overview of the PE configurations and the possible photocell and photoreactor design for hydrogen production by PEC water splitting.  相似文献   

8.
Sustainable production of hydrogen at high capacities and low costs is one the main challenges of hydrogen as a future alternative fuel. In this paper, a new hydrogen production system is designed and fabricated to investigate hydrogen production using aluminum and solar energy. Numerous experiments are performed to evaluate the hydrogen production rate, quantitatively and qualitatively. Moreover, correlations between the total hydrogen production volume over time and other parameters are developed and the energy efficiency and conversion ratio of the system are determined. Also, a method is developed to obtain an optimal and stable hydrogen production rate based on system scale and consumed materials. It is observed that at low temperatures, the hydrogen production volume, efficiency and COP of the system increase at a higher sodium hydroxide molarity. In contrast, at high temperatures the results are vice versa. The maximum hydrogen production volume, hydrogen production rate, reactor COP and system efficiency using 0.5 M NaOH solution containing 3.33 g lit?1 aluminum at 30 °C are 6119 mL, 420 mL min?1, 1261 mL H2 per 1 g of Al, and 16%, respectively.  相似文献   

9.
This study reported a novel hydrogen production experimental set up, which utilizes the chemical reaction between aluminum and water to produce hydrogen. The developed experimental setup had an aluminum powder spraying subsystem integrated within the overall setup. The effectiveness of this hydrogen production experimental set up was improved using 149-μm aluminum powder, and nitrogen gas as the medium to facilitate the spraying of the aluminum powder. Furthermore, the study utilized sodium hydroxide as the reaction promoter. The various experimental conditions implemented during the testing process included changes in the water temperature and system inputs. The criteria used to evaluate the system performance were the hydrogen yield and hydrogen production rate. The tap water was able to achieve a full hydrogen yield due to its composition, however, the 50% increase in NaOH mass trial was able to achieve a higher yield of 97.15% and 95.44% for the 3g and 6g aluminum sample test respectively. Furthermore, seawater was found to achieve a yield of 58.8%, which can be considered a viable option for future testing. Furthermore, seawater's abundance also adds to its viability for future testing. Also, the study results showed that an increase in reaction temperature best facilitates a chemical reaction taking place. This was evident during the staring temperature of the water test for the 6g aluminum samples. For instance, the maximum hydrogen production rate for the 70 °C was 35.04 mL/s, while the smallest peak for hydrogen production rate was observed using the 40 °C as the starting temperature. The 40 °C test produced a maximum hydrogen production rate value of 27.99 mL/s.  相似文献   

10.
《Journal of power sources》2006,157(2):921-926
Suppression of the parasitic corrosion while maintaining the electrochemical activity of the anode metal is one of the serious problems that affects the energy efficiency of aluminum-air batteries. The need to use high-purity aluminum or special aluminum-based alloys results in a significant increase in the cost of the anode, and thus an increase in the total cost of energy generated by the aluminum-air battery, which narrows the range of possible applications for this type of power source. This study considers the process of parasitic corrosion as a method for hydrogen production. Hydrogen produced in an aluminum-air battery by this way may be further employed in a hydrogen-air fuel cell (Hy-air FC) or in a heat engine, or it may be burnt to generate heat. Therefore, anode materials may be provided by commercially pure aluminum, commercially produced aluminum alloys, and secondary aluminum. These materials are much cheaper and more readily available than special anode alloys of aluminum and high-purity aluminum. The aim of present study is to obtain experimental data for comparison of energy and cost parameters of some commercially produced aluminum alloys, of high-purity aluminum, and of a special Al–ln anode alloy in the context of using these materials as anodes for an Al-air battery and for combined production of electrical power and hydrogen.  相似文献   

11.
This study, based on the Taiwan dynamic computable general equilibrium model—energy, hydrogen (TAIGEM—EH), provides an economic baseline forecast for petroleum and hydrogen economies in Taiwan in 2004–2030. Through survey data on existing energy sectors and other industries, TAIGEM—EH predicts that developing hydrogen economy presents an appropriate strategy for meeting the Kyoto Protocol's CO2 emissions mitigation target with attempt to keep economic growth. Hydrogen economy is noted sensitive to industrial structure and rate of technical progress on hydrogen production. Transition from petroleum economy to hydrogen economy acquires strong governmental support and significant technical progress.  相似文献   

12.
There is growing support to electrifying our economy by getting off of fossil fuels by producing renewable energy by wind and solar photovoltaic plants and using batteries to balance production and demand or to store energy onboard vehicles that cannot move along electric lines. Unfortunately, this proposal is pushed forward negating the value of hydrogen as an energy store. As here commented, the hydrogen economy is not competitive, but complementary and synergetic to the electric economy, and both should be promoted together to secure a faster transition towards a CO2 emission-free economy.  相似文献   

13.
The hydrogen economy is one of the key areas of interest for the reduction of societal greenhouse gas emissions. However, the potential for impact of hydrogen technologies in the transition to a hydrogen economy will vary across the different industrial sectors depending on the source and usage of current energy sources. This paper presents a broad examination of hydrogen economy opportunities and impacts for the minerals industry in Australia. The usage of hydrogen and fuel cell technology in the mining and metals production sub-sectors has differing potential as metallurgical and heavy-duty mobile energy consumption may not be feasibly substituted with hydrogen. This examination indicates a potential of 12–13% reduction in primary energy usage by the minerals industry, with a resulting reduction in greenhouse gas emissions of 9–12% without carbon capture and storage (CCS), or 53–60% reduction with CCS. Other impacts on the industry may include an increased demand for minerals to produce fuel cells, catalysts and infrastructure. Minimal local reserves of platinum group metals are likely to be the limiting capacity factor.  相似文献   

14.
Heavy fossil fuels consumption has raised concerns over the energy security and climate change while hydrogen is regarded as the fuel of future to decarbonize global energy use. Hydrogen is commonly used as feedstocks in chemical industries and has a wide range of energy applications such as vehicle fuel, boiler fuel, and energy storage. However, the development of hydrogen energy in Malaysia is sluggish despite the predefined targets in hydrogen roadmap. This paper aims to study the future directions of hydrogen economy in Malaysia considering a variety of hydrogen applications. The potential approaches for hydrogen production, storage, distribution and application in Malaysia have been reviewed and the challenges of hydrogen economy are discussed. A conceptual framework for the accomplishment of hydrogen economy has been proposed where renewable hydrogen could penetrate Malaysia market in three phases. In the first phase, the market should aim to utilize the hydrogen as feedstock for chemical industries. Once the hydrogen production side is matured in the second phase, hydrogen should be used as fuel in internal combustion engines or burners. In the final phase hydrogen should be used as fuel for automobiles (using fuel cell), fuel-cell combined heat and power (CHP) and as energy storage.  相似文献   

15.
Hydrogen production plays a very important role in the development of hydrogen economy.Hydrogen gas production through solar energy which is abundant, clean and renewable is one of the promising hydrogen production approaches. This article overviews the available technologies for hydrogen generation using solar energy as main source.Photochemical, electrochemical and thermochemical processes for producing hydrogen with solar energy are analyzed from a technological environmental and economical point of view. It is concluded that developments of improved processes for hydrogen production via solar resource are likely to continue in order to reach competitive hydrogen production costs. Hybrid thermochemical processes where hydrocarbons are exclusively used as chemical reactants for the production of syngas and the concentrated solar radiation is used as a heat source represent one of the most promising alternatives: they combine conventional and renewable energy representing a proper transition towards a solar hydrogen economy.  相似文献   

16.
Cogeneration of hydrogen and electrical energy in a single system is still a challenging issue. In this work, in a micro scale, a novel miniaturized system is introduced to capture the electrical energy of produced hydrogen on aluminum alloy by using an ultra-microelectrode based on scanning electrochemical microscopy (SECM). Sophisticated nanosize atomic force microscopy (AFM) based SECM probe could collect the electrochemical current close proximity distance from the aluminum surface to attain the highest possible current efficiency. Various collected current levels were associated to the aluminum microstructure constituents. It is expected that future development in instrumentation could principally facilitate SECM as a tool for hydrogen economy.  相似文献   

17.
Wind energy and the hydrogen economy—review of the technology   总被引:2,自引:0,他引:2  
The hydrogen economy is an inevitable energy system of the future where the available energy sources (preferably the renewable ones) will be used to generate hydrogen and electricity as energy carriers, which are capable of satisfying all the energy needs of human civilization. The transition to a hydrogen economy may have already begun. This paper presents a review of hydrogen energy technologies, namely technologies for hydrogen production, storage, distribution, and utilization. Possibilities for utilization of wind energy to generate hydrogen are discussed in parallel with possibilities to use hydrogen to enhance wind power competitiveness.  相似文献   

18.
Recent years have witnessed an increasing interest in hydrogen production using nuclear energy. A number of countries are actively exploring the option of nuclear hydrogen production and have established concrete roadmaps for near and far term achievements. This paper presents a summary of information presented at some IAEA technical meetings on status of nuclear hydrogen production including ongoing related R&D activities in Member States. The paper highlights, in addition, the IAEA hydrogen economic evaluation programme (HEEP) which has recently been developed under agreement and in collaboration with the BHABHA Atomic Research Centre (BARC). HEEP software can be used to perform the economics of the most promising processes for hydrogen production. Current processes considered in HEEP are: high and low temperature electrolysis, thermo-chemical processes including S-I process, conventional electrolysis and steam reforming. HEEP software is also suitable for comparative between nuclear and fossil energy sources, and for solely hydrogen production or cogeneration with electricity. The HEEP modelling includes various aspects of hydrogen economy including storage, transport, and distribution with options to eliminate or include specific details as required by the users.  相似文献   

19.
Hydrogen demand as an energy currency is anticipated to rise significantly in the future, with the emergence of a hydrogen economy. Hydrogen production is a key component of a hydrogen economy. Several production processes are commercially available, while others are under development including thermochemical water decomposition, which has numerous advantages over other hydrogen production processes. Recent advances in hydrogen production by thermochemical water decomposition are reviewed here. Hydrogen production from non-fossil energy sources such as nuclear and solar is emphasized, as are efforts to lower the temperatures required in thermochemical cycles so as to expand the range of potential heat supplies. Limiting efficiencies are explained and the need to apply exergy analysis is illustrated. The copper–chlorine thermochemical cycle is considered as a case study. It is concluded that developments of improved processes for hydrogen production via thermochemical water decomposition are likely to continue, thermochemical hydrogen production using such non-fossil energy will likely become commercial, and improved efficiencies are expected to be obtained with advanced methodologies like exergy analysis. Although numerous advances have been made on sulphur–iodine cycles, the copper–chlorine cycle has significant potential due to its requirement for process heat at lower temperatures than most other thermochemical processes.  相似文献   

20.
Metallic powders exposed to water are sources of hydrogen gas that may result in an explosion hazard in the process industries. In this paper, hydrogen production and flame propagation in a modified Hartmann tube were investigated using activated aluminum powder as fuel. A self-sustained reaction of activated aluminum with water was observed at cool water and room temperatures for all treatments. One gram of Al mixed with 5 wt% NaOH or CaO resulted in a rapid rate of hydrogen production and an almost 100% yield of hydrogen generation within 30 min. The flame structures and propagation velocity (FPV) of released hydrogen at different ignition delay times were determined using electric spark ignition. Flame structures of hydrogen were mainly dependent on hydrogen concentration and ignition delay time, likely due to different mechanisms of hydrogen generation and flame propagation. As expected, FPVs of hydrogen in the Hartmann tube increased with ignition delay time. However, the FPV of upward flame propagation was much larger than that of downward flame propagation due to the effect of spreading acceleration at the explosion vent. Once ignited, the FPV of upward flame propagation reached 31.3–162.5 m/s, a value far larger than the 7.5–30 m/s for downward flame propagation. Hydrogen explosion caused by the accumulation of wet metal dust can be far more dangerous than an ordinary hydrogen explosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号