首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An inverse heat conduction problem (IHCP) was investigated in the two-dimensional section of a pipe elbow with thermal stratification to estimate the unknown transient fluid temperatures near the inner wall of the pipeline. An inverse algorithm based on the conjugate gradient method (CGM) was proposed to solve the IHCP using temperature measurements on the outer wall. In order to examine the accuracy of estimations, some comparisons have been made in this case. The temperatures obtained from the solution of the direct heat conduction problem (DHCP) using the finite element method (FEM) were pseudo-experimental input data on the outer wall for the IHCP. Comparisons of the estimated fluid temperatures with experimental fluid temperatures near the inner wall showed that the IHCP could accurately capture the actual temperature in form of the frequency of the temperature fluctuations. The analysis also showed that the IHCP needed at least 13 measurement points for the average absolute error to be dramatically reduced for the present IHCP with 37 nodes on each half of the pipe wall.  相似文献   

2.
3.
ALeast-SquaresSolutiontoNonlinearSteady-StateMulti-DimensionalIHCPALeast-SquaresSolutiontoNonlinearSteady-StateMulti-Dimensio...  相似文献   

4.
We study the determination of unknown thermal coefficient of a semi-infinite material through a phase-change process with an overspecified condition on the fixed face with temperature-dependent thermal conductivity. We determine necessary and sufficient conditions on data in order to obtain the existence of the solution. We also give formulae for the unknown coefficients.  相似文献   

5.
Ablative materials can sustain very high temperatures in which surface thermochemical processes are significant enough to cause surface recession. Existence of moving boundary over a wide range of temperatures, temperature-dependent thermophysical properties of ablators, and no prior knowledge about the location of the moving surface augment the difficulty for predicting the exposed heat flux at the receding surface of ablators. In this paper, the conjugate gradient method is proposed to estimate the unknown surface recession and time-varying net surface heat flux for these kinds of problems. The first order Tikhonov regularization is employed to stabilize the inverse solution. Considering the complicated phenomena that are taking place, it is shown via simulated experiment that unknown quantities can be obtained with reasonable accuracy using this method despite existing noises in the measurement data.  相似文献   

6.
A serial algorithm for the inverse heat conduction problem (IHCP) has been developed to estimate the individual flux components, one by one, at the unknown boundary, based on the function specification method. The sensitivity coefficient defined in this algorithm brings out the influence of the heat flux components independent of each other. The objective function minimizes the difference in the measured temperature and the contribution of the individual flux component to the thermal field at the sensor location. The serial algorithm developed here could be used with data from both overspecified and underspecified sensors with respect to the number of flux components. The method was tested for delineating independent heat fluxes at the boundary of a two-dimensional solid for both space- and time-varying heat fluxes. Simulated thermal histories obtained from direct solution were used as inputs for the inverse problem for characterizing the new algorithm.

Three types of analyses were done on the results of the IHCP, focused on (1) the convergence of error in estimated temperatures at the different sensor locations, (2) overall error in estimated temperatures for the whole domain, and (3) the total heat energy transferred across the boundary. It is shown that the optimum configuration of independent unknown fluxes is given by the one with minimum energy estimates across the boundary, for both cases.  相似文献   

7.
In this paper the D2Q9 lattice Boltzmann method (LBM) was utilized for the solution of a two-dimensional inverse heat conduction (IHCP) problem. The accuracy of the LBM results was validated against those obtained from prevalent numerical methods using a common benchmark problem. The conjugate gradient method was used in order to estimate the heat flux test case. A complete error analysis was performed. As the LBM is attuned to parallel computations, its use is recommended in conjugation with IHCP solution methods.  相似文献   

8.
Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high frequency can lead to time-varying wall thermal stress and even thermal fatigue on the inner wall. Numerous cases, however, exist where inner wall temperatures cannot be measured and only outer wall temperature measurements are feasible. Therefore, it is one of the popular research areas in nuclear science and engineering to estimate temperature fluctuations on the inner wall from measurements of outer wall temperatures without damaging the structure of the pipe. In this study, both the one-dimensional(1D) and the two-dimensional(2D) inverse heat conduction problem(IHCP) were solved to estimate the temperature fluctuations on the inner wall. First, numerical models of both the 1D and the 2D direct heat conduction problem(DHCP) were structured in MATLAB, based on the finite difference method with an implicit scheme. Second, both the 1D IHCP and the 2D IHCP were solved by the steepest descent method(SDM), and the DHCP results of temperatures on the outer wall were used to estimate the temperature fluctuations on the inner wall. Third, we compared the temperature fluctuations on the inner wall estimated by the 1D IHCP with those estimated by the 2D IHCP in four cases:(1) when the maximum disturbance of temperature of fluid inside the pipe was 3℃,(2) when the maximum disturbance of temperature of fluid inside the pipe was 30℃,(3) when the maximum disturbance of temperature of fluid inside the pipe was 160℃, and(4) when the fluid temperatures inside the pipe were random from 50℃ to 210℃.  相似文献   

9.
This paper presents a seminumerical method for solving inverse heat conduction problems (IHCP) encountered in the monitoring of thermal stresses in pressurized thick-walled elements of steam boilers. The objective is to give a simple and quick method of determining transient temperature histories in thick-walled components based on temperature measurements on the outer thermally insulated surface. The method is suitable for solving one-dimensional problems. However, it can be extended to multidimensional temperature fields. The IHCP will be solved using the control volume approach. The accuracy of the method is demonstrated by comparing computational and experimental results. Gram orthogonal polynomials are used to smooth the measured time-dependent temperature and for evaluating time derivatives of noisy data with high accuracy. Due to the simplicity of the final formulations, the developed method is very useful for estimating the thermal stresses and controlling the fatigue damage of boiler components.  相似文献   

10.
The presence of thermocouples inside a heat-conducting body will distort the temperature field in the body and may lead to significant bias in the temperature measurement. If temperature histories obtained from thermocouples are used in the inverse heat conduction problem (IHCP), errors are propagated into the IHCP results. The bias in the thermocouple measurements can be removed through use of appropriate detailed thermocouple models to account for the dynamics of the sensor measurement. The results of these models can be used to generate correction kernels to eliminate bias in the thermocouple reading, or can be applied as sensitivity coefficients in the IHCP directly. Three-dimensional and axisymmetric models are compared and contrasted and a simple sensitivity study is conducted to evaluate the significance of thermal property selection on the temperature correction and subsequent heat flux estimation. In this paper, a high-fidelity thermocouple model is used to account for thermocouple bias in an experiment to measure heat fluxes from solidifying aluminum to a sand mold. Correction kernels are obtained that are used to demonstrate the magnitude of the temperature measurement bias created by the thermocouples. The corrected temperatures are used in the IHCP to compute the surface heat flux. A comparison to IHCP results using uncorrected temperatures shows the impact of the bias correction on the computed heat fluxes.  相似文献   

11.
In this paper the theoretical model is built for ZEpHyR (ZARM Experimental Hybrid Rocket) main engine which is being developed at ZARM institute, Bremen, Germany. The theoretical model is used to estimate the temperature of exhaust gas. The Conjugate Gradient Method (CGM) with Adjoint Problem for Function Estimation iterative technique is used to solve the Inverse Heat Conduction Problem (IHCP) to estimate the heat flux and internal wall temperature at the throat section of the nozzle. Bartz equation is used to calculate the convective heat transfer coefficient. The exhaust gas temperature is determined using the estimated heat flux, the wall temperature at internal surface of nozzle and the heat transfer coefficient. The accuracy of CGM iterative scheme to solve the IHCP is also investigated and its results are presented.  相似文献   

12.
A technique is presented for the uncertainty analysis of the linear Inverse Heat Conduction Problem (IHCP) of estimating heat flux from interior temperature measurements. The selected IHCP algorithm is described. The uncertainty in thermal properties and temperature measurements is considered. A propagation of variance equation is used for the uncertainty analysis. An example calculation is presented. Parameter importance factors are defined and computed for the example problem; the volumetric heat capacity is the dominant parameter and an explanation is offered. Thoughts are presented on extending the analysis to include the non-linear problem of temperature dependent properties.  相似文献   

13.
In many dynamic heat transfer situations, the temperature at the heated boundary is not directly measurable and can be obtained by solving an inverse heat conduction problem (IHCP) based on measured temperature or/and heat flux at the accessible boundary. In this study, IHCP in a two-dimensional rectangular object is solved by using the conjugate gradient method (CGM) with temperature and heat flux measured at the boundary opposite to the heated boundary. The inverse problem is formulated in such a way that the heat flux at heated boundary is chosen as the unknown function to be recovered, and the temperature at the heated boundary is computed as a byproduct of the IHCP solution. The measurement data, i.e., the temperature and heat flux at the opposite boundary, are obtained by numerically solving a direct problem where the heated boundary of the object is subjected to spatially and temporally varying heat flux. The robustness of the formulated IHCP algorithm is tested for different profiles of heat fluxes along with different random errors of the measured heat flux at the opposite boundary. The effects of the uncertainties of the thermophysical properties and back-surface temperature measurement on inverse solutions are also examined.  相似文献   

14.
A hybrid numerical method involving the Laplace transform technique and finite-difference method in conjunction with the least-squares method and actual experimental temperature data inside the test material is proposed to estimate the unknown surface conditions of inverse heat conduction problems with the temperature-dependent thermal conductivity and heat capacity. The nonlinear terms in the differential equations are linearized using the Taylor series approximation. In this study, the functional form of the surface conditions is unknown a priori and is assumed to be a function of time before performing the inverse calculation. In addition, the whole time domain is divided into several analysis subtime intervals and then the unknown estimates on each subtime interval can be predicted. In order to show the accuracy and validity of the present inverse scheme, a comparison among the present estimates, direct solution, and actual experimental temperature data is made. The effects of the measurement errors, initial guesses, and measurement location on the estimated results are also investigated. The results show that good estimation of the surface conditions can be obtained from the present inverse scheme in conjunction with knowledge of temperature recordings inside the test material.  相似文献   

15.
Two-dimensional transient inverse heat conduction problem (IHCP) of functionally graded materials (FGMs) is studied herein. A combination of the finite element (FE) and differential quadrature (DQ) methods as a simple, accurate, and efficient numerical method for FGMs transient heat transfer analysis is employed for solving the direct problem. In order to estimate the unknown boundary heat flux in solving the inverse problem, conjugate gradient method (CGM) in conjunction with adjoint problem is used. The results obtained show good accuracy for the estimation of boundary heat fluxes. The effects of measurement errors on the inverse solutions are also discussed.  相似文献   

16.
ABSTRACT

We analyzed the thermal stress on a thermoviscoelastic hollow cylinder with temperature-dependent thermal properties with the finite difference method. It was gradually heated at the inner surface and the outer surface was kept at the initial temperature. The cylinder material was thermorheologically simple and had a temperature-dependent coefficient of linear thermal expansion, thermal conductivity, and thermal diffusivity (and/or specific heat). A bisphenol A–type epoxy resin was chosen as the thermoviscoelastic material of the cylinder for numerical analysis. Based on these results, we discuss the effects of thermoviscoelasticity and temperature-dependent thermal properties on the stress field.  相似文献   

17.
The modified Levenberg-Marquardt method is used for simultaneous estimation of decomposition kinetic coefficients and temperature-dependent thermophysical properties of charring ablators with a moving boundary over a wide temperature range. No prior information is used for the functional forms of the unknown thermal conductivity and specific heat. The procedure used differs from the traditional one in that it does not require prescribed time-dependent surface heat flux, recession rate, and pyrolysis gas mass flow rate. These time-dependent quantities may recover during an iterative procedure. The measured temperatures are simulated numerically by the Charring material ablation code, which accounts for unsteady ablation. The method can determine unknown parameters in an efficient manner with reasonable accuracy, without exact advance knowledge about the net surface heat flux, surface recession, and gas flux through the material.  相似文献   

18.
《热应力杂志》2012,35(1):38-54
Abstract

Based on the generalized thermoelastic diffusion theory with fractional order derivative, the dynamic response of an infinite thermoelastic medium with a spherical cavity is investigated. The thermoelastic and diffusive properties of the medium are assumed to be temperature-dependent, and the medium is subjected to a thermal shock and a chemical potential shock at the inner surface of the spherical cavity simultaneously. The governing equations of the problem are formulated and then solved by Laplace transform together with its numerical inversion. The distributions of the non-dimensional temperature, displacement, radial stress, concentration and chemical potential are obtained and illustrated graphically. In calculation, the effects of the fractional order parameter and the temperature-dependent properties on the variations of the considered variables are presented and discussed in detail. The results show that the fractional order parameter and the temperature-dependent properties significantly influence the variations of all the considered variables. The present investigation may be valuable in heat and mass transfer, waste disposal or petroleum engineering, etc.  相似文献   

19.
为了对二甲醚喷雾及燃烧过程进行数值模拟,根据分子理论对二甲醚的饱和蒸气压、液体黏度、汽化潜热、表面张力、热导率和扩散系数等热物理参数与温度的关系式进行估算。由于二甲醚为非极性分子,估算获得相当好的准确性。估算所得的二甲醚热物理特性参数完全可满足喷雾和燃烧过程数值模拟的要求。分子理论还为其他未知燃料热物理特性的获取提供了一种新的途径。  相似文献   

20.
In this work we estimate the surface temperature in two dimensional steady-state in a rectangular region by two different methods, the singular value decomposition (SVD) with boundary element method (BEM) and the least-squares approach with integral transform method (ITM). The BEM method is efficient for solving inverse heat conduction problems (IHCP) because only the boundary of the region needs to be discretized. Furthermore, both temperature and heat flux at the unknown boundary are estimated at the same time. The least-squares technique involves solving the equations constructed from the measured temperature and the exact solution. The measured data are simulated by adding random errors to the exact solution of the direct problem. The effects of random errors on the accuracy of the predictions are examined. The sensitivity coefficients are also presented to illustrate the effect of sensor location on the estimated surface conditions. Numerical experiments are given to demonstrate the accuracy of the present approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号