首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
W–20 wt.% Cu balls were fabricated by powder injection molding using a binder system consisted of paraffin wax, high density polyethylene, ethylene vinyl acetate and stearic acid. By optimizing the injection molding parameters, defect-free green parts were obtained. A two-step debinding process was employed to extract the binders in the molded samples. All soluble ingredients of the binders in the green parts were extracted during solvent debinding, and the residual binders can be removed in thermal debinding. The debound W–Cu samples were sintered in H2 atmosphere at temperatures ranging 1050–1150 °C for 2 h. It was shown that relative density of the sintered W–Cu samples increases from 87.37% of the theoretical to 95.58% as sintering temperature rises from 1050 °C to 1150 °C. Microstructures of the molded, the debound and the sintered W–Cu samples were observed by scanning electron microscope, and the sintered W–Cu balls have fine and homogeneous microstructures. Maximum compressive strength of W–Cu balls with 8.5 mm diameter reaches 58 kN.  相似文献   

2.
A powder extrusion molding (PEM) process has been used for the manufacturing of tungsten heavy alloy rods with large length to diameter ratio. An improved wax-based multi-component binder was developed for PEM of 93W–Ni–Fe alloy. The miscibility of its components and the characteristics of the binder were evaluated and good thermal–physical properties were obtained. Also, the feedstock rheological properties, extrusion molding and debinding process were studied. The feedstock exhibited a pseudo-plastic flow behavior. The large length to diameter ratio rods, with diameters up to 36 mm were extruded at 65 °C by optimizing the extrusion process. A two-step debinding process was employed to remove the binder in the extruded rods. Solvent debinding was carried out in n-heptane at 45 °C to extract the soluble components. A process of repeated short time immersion and drying of the extruded rods (called short-period solvent debinding) was developed and using this novel technique the binder removed was raised from 45% to 60%. SEM analyses indicated that a large volume of pores was formed in debound rods, but had not created interpenetrating pore channels yet. The rest of the binder could be thermally extracted at a high heating rate without defects.  相似文献   

3.
Differential dilatometry has been employed to study the kinetics of the massive ferrite (α)  austenite (γ) transformation upon isochronal heating (i.e. austenitization) of the substitutional Fe–2.96 at.% Ni alloy subjected to a range of applied constant uniaxial compressive stresses. A phase-transformation model, involving site saturation, interface-controlled (continuous) growth and incorporating an impingement correction for an intermediate of the cases of ideally periodically and of ideally randomly dispersed growing particles, has been employed to extract the interface-migration velocity of the α/γ interface and the transformation-induced deformation energy taken up by the specimen. The value obtained for the energy corresponding with the elastic and plastic deformation associated with the accommodation of the α/γ volume misfit depends on the austenite fraction and increases distinctly with an increase in the applied uniaxial compressive stress, which is compensated by, in particular, an increase in the chemical driving force corresponding to an increase in the onset temperature. The opposite effects of an applied uniaxial compressive stress on the α  γ transformation and on the γ  α transformation can be discussed as the outcome of constrained plastic deformation due to transformation-induced strain.  相似文献   

4.
This work aimed to investigate and critically analyze the differences in microstructural features and thermal stability of Cu−11.3Al−3.2Ni−3.0Mn−0.5Zr shape memory alloy processed by selective laser melting (SLM) and conventional powder metallurgy. PM specimens were produced by sintering 106−180 µm pre-alloyed powders under an argon atmosphere at 1060 °C without secondary operations. SLM specimens were consolidated through melting 32−106 µm pre-alloyed powders on a Cu−10Sn substrate. Mechanical properties were measured through Vickers hardness testing. Differential scanning calorimetry was conducted to assess the martensitic transformation temperatures. X-ray diffraction patterns were collected to identify the metallurgical phases. Optical and scanning electron microscopy was used to analyze the microstructural features. β1 martensite was found, irrespective of the processing route, although coarser martensitic variants were present in PM-specimens. In conventional powder metallurgy samples, intergranular eutectoid constituents and stabilized austenite also formed at room temperature. PM-specimens showed similar average hardness values to the SLM-specimens, albeit with high standard deviation linked to the porosity. The specimens processed by SLM showed reversible martensitic transformation (T0=171 °C). PM-processed specimens did not show shape memory effects.  相似文献   

5.
Ferritic chromium steels are important structural materials for future nuclear fission and fusion reactors due to their advantages over traditional austenitic steels, such as higher thermal fatigue resistance, lower thermal expansion coefficients and reduced swelling. However radiation-induced segregation or depletion (RIS/RID) of solute atoms at grain boundaries in these materials is a concern because these phenomena could adversely affect their mechanical properties. In an effort to develop a full mechanistic understanding of RIS/RID, a systematic approach combining orientation imaging, site-specific specimen preparation and three-dimensional atomic-scale analysis has been developed to characterize the behaviour of Cr and C at grain boundaries during irradiation. This methodology has been applied to a Fe–15.2 at.% Cr alloy to investigate the effects of grain boundary misorientation, irradiation depth and impurities. Systematic differences in Cr segregation are reported as a function of grain boundary character and irradiation conditions. The similar properties demonstrated by grain boundaries of similar type means that it should be possible to apply relatively simple models to predict the long-term behaviour of these materials under irradiation conditions.  相似文献   

6.
The effects of plastic deformation on lamellar structure formation in solution-treated Ti–39 at.% Al single crystals were investigated, focusing on the role of dislocations of different slip systems. The dislocations were introduced by indentation on the surfaces of solution-treated single crystals with different crystallographic orientations. Traces of basal and prism slips were observed, depending on the position relative to the indentation. During annealing at α2 + γ dual-phase temperatures, lamellar structures were formed faster where basal slip had occurred than where prism slip had occurred. After long annealing, the length scale of lamellar structures formed depends on the slip system operated during prior deformation: in the region where only one of either basal or prism slip had occurred the lamellar structure was coarser than in undeformed crystal, while in the region where both basal and prism slips occurred the lamellar structure was finer than those formed in undeformed crystal. The reasons for the differences in lamellar structures are discussed on the basis of the frequencies of stacking fault formation on (0 0 0 1) planes as precursors to γ-precipitates. The results suggest that the cross-slip of dislocations between basal and prism planes, which gives rise to the formation of multiple stacking faults on many parallel (0 0 0 1) planes, is responsible for the refinement of lamellar structures.  相似文献   

7.
Phase transformations in the Co–9 at % Al have been investigated after slow furnace cooling. It has been shown that the structure and phase composition of the alloy after slow cooling do not correspond to the equilibrium phase diagram of the alloy of this chemical composition. It has been established that the α → ε martensitic transformation does not require overcooling and occurs even during a slow cooling of the alloy. It has been found that the formation of 4H modulated martensite is a specific feature of the binary alloys of cobalt and is not connected with the rate of their cooling. The Curie temperatures for the B2, α, and ε phases have been determined.  相似文献   

8.
Partial isothermal section of the Mn–Ni–Zn system at 400 °C was experimentally established by means of XRD and SEM/EDS techniques. Three ternary compounds, i.e. T, τ1 and τ2, were found to exist at 400 °C for the first time. The compound T having an approximate formula of Mn7Ni7Zn86 was indexed as fcc structure with a lattice parameter of a = 1.81476 (1) nm. τ1, the structure of which is unknown, has an approximately stoichiometric composition of about 29 at.% Mn, 38 at.% Ni and balanced Zn. τ2 has fcc structure and a composition range of about 46–40 at.% Mn and constant 30 at.% Zn. Extended single-phase regions of the phases Mn5Zn21, Ni2Zn11, NiZn3, NiZn and β-Mn were observed. The maximum solubility of Ni in Mn5Zn21 and those of Mn in Ni2Zn11, NiZn3 and NiZn were determined to be 10, 6, 26 and 25 at.% at 400 °C, respectively.  相似文献   

9.
《Intermetallics》2002,10(11-12):1265-1270
The oxidation behavior of Zr–30Cu–10Al–5Ni bulk metallic glass and its crystalline counterpart was studied over the temperature range of 300–425 °C in dry air. In general, the oxidation kinetics of both amorphous and crystalline alloys followed a two- or three-stage parabolic rate law at T⩾350 °C, while at 300 °C the amorphous alloy oxidized following a linear behavior. The oxidation rate constants for the amorphous alloy are slightly higher than those for the crystalline alloy at 350–400 °C. The scale formed on the amorphous alloy consists of mainly tetragonal-ZrO2 at 300 °C, while a mixture of monoclinic-ZrO2 (m-ZrO2) and tetragonal-ZrO2 (t-ZrO2) and some CuO were detected at higher temperatures. The scale formed on the crystalline alloy, on the other hand, consists of mainly Al2O3, some tetragonal-ZrO2, and a slight amount of monoclinic-ZrO2 at 300 °C. At higher temperatures, the crystalline alloy consists of mainly monoclinic-ZrO2, some CuO and Cu2O, and limited tetragonal-ZrO2. It is suggested that the formation of Al2O3 (at 300 °C) and CuO/Cu2O (at 350-400 °C) on the crystalline alloy is responsible for the reduced oxidation rates as compared with those of amorphous alloy.  相似文献   

10.
In this paper the influence of the Ni binder metal and silicon as an additional alloying element on the microstructure and mechanical properties of WC-based cemented carbides processed by conventional powder metallurgy was studied. Microstructural examinations of specimens indicated the presence of a very low and even distributed porosity and the presence of islands of metal binder in the microstructure of the cemented carbides. Furthermore, despite the addition of silicon and carbon in the cemented carbides, it was not observed the presence of small fractions of undissolved SiC and free graphite nodules in their microstructure. Vickers hardness and Flexural strength tests indicated that the cemented carbide WC–Ni–Si with 10 wt.% of binder presented bulk hardness similar to the conventional WC–Co cemented carbides and superior flexure strength and fracture toughness.  相似文献   

11.
Ti–48Al–6Nb (at.%) porous alloys are fabricated by elemental powder metallurgy to study the pore formation and propagation mechanism. Reactive diffusion, pore formation process, and pore characteristics of the porous TiAl–Nb alloys are investigated at different temperatures. It is found that the porous alloys exhibit a uniform, maze-like network skeleton, viz., a typical α2-TiAl3/γ-TiAl fully lamellar microstructure. The reactive diffusivities between Ti and Al powders are dominant during the Ti–Al–Nb powder sintering. Gas release during sintering also plays an important role in the pore propagation and the compact expanding process. In addition, a pore-formation model is proposed to interpret the growth mechanism of pores and skeletons.  相似文献   

12.
In the temperature range of 50–360 K, the effect of the plane mechanical deformations on the magnetic susceptibility χac(T) of metal biaxially textured Ni–5.0 at % W tapes has been investigated. To create the state of plane stress, the temperature cycling of thin tapes cemented to thick substrates of Si, Mo, Ti, and D16T aluminum alloy has been performed. It has been shown that the main features of the magnetic susceptibility behavior can be explained by magnetoorientation transitions and the appearance of internal stresses σ(T) exceeding the yield strength of the tape material.  相似文献   

13.
In this study, the nano-crystalline Nitinol (50.9 at.% Ni) was prepared by 40% cold deformation. Subsequently it was subjected to 15-min-heat treatments at 300–550 °C. Changes of the structure and mechanical properties were studied by transmission electron microscopy, micro X-ray diffraction, differential scanning calorimetry, Vickers hardness measurements, tensile and bend-type fatigue testing. It was shown that the cold drawn material contains textured nano-crystalline B2 grains of 50 nm in thickness and a high concentration of lattice defects. Its tensile strength, hardness and fatigue life were 1521 MPa, 421 HV0.05 and 2435 bending cycles to fracture, respectively. After heat-treatment up to 450 °C/15 min the material underwent Ni4Ti3 precipitation and partial recovery processes. Heat-treatments at above 450 °C induced recrystallization, grain and precipitate growth. Hardness and fatigue lives showed maxima of 692 HV0.05 and 5883 cycles, respectively, after heat-treatments at 450 °C/15 min. In contrast, both tensile strength and B2 → B19′ transformation stress decreased with increasing heat-treatment temperature, but a decrease of the tensile strength after heat-treatments at 300–450 °C was slow (tensile strength after heat-treatment at 450 °C/15 min was 1486 MPa). The observed variations of mechanical characteristics were discussed in relation to structural changes observed.  相似文献   

14.
The phase equilibria at 600 °C of the Ni–Si–Zn system were investigated by using 19 alloys and four reaction diffusion couples. The alloys were prepared by melting the pure elements in the alumina crucibles capsulated in evacuated quartz tubes. The samples were examined by means of optical microscopy, X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy, and electron probe microanalysis. The presented isothermal section at 600 °C is characterized by the existence of five ternary phases, which are labeled as T1, T2, τ3, τ4 and β′, respectively. Three previously reported ternary compounds, viz. Ni3Si0.33Zn0.67 (T2), Ni2SiZn3 (τ3), and Ni3Si2Zn (τ4), were confirmed to exist at 600 °C. β′-NiZn was assumed to be the Si-stabilized β-NiZn phase in the Ni–Zn binary system. T1 is a newly found ternary compound. It should be noted that the phase relationships at 600 °C are significantly different from the previously reported ones at 800 and 297 °C. γ1-NiZn3, the existence of which is still controversial in the literature, was observed at 600 °C. The solubilities of Zn in Ni31Si12, Ni3Si2 and NiSi, and those of Si in γ1-NiZn3 and γ-Ni2Zn11 are negligible. The solubilities of Zn in α-NiSi2 and δ-Ni2Si were determined to be 8.5 and above 3.1 at.% Zn, respectively. α-NiSi2 and δ-Ni2Si extend into the ternary system at constant Ni content with Zn substituting for Si.  相似文献   

15.
16.
《Acta Materialia》2008,56(16):4369-4377
Upon aging at 300–450 °C, nanosize, coherent Al3(Sc1−xTix) precipitates are formed in pure aluminum micro-alloyed with 0.06 at.% Sc and 0.06 at.% Ti. The outstanding coarsening resistance of these precipitates at these elevated temperatures (61–77% of the melting temperature of aluminum) is explained by the significantly smaller diffusivity of Ti in Al when compared to that of Sc in Al. Furthermore, this coarse-grained alloy exhibits good compressive creep resistance for a castable, heat-treatable aluminum alloy: the creep threshold stress varies from 17 MPa at 300 °C to 7 MPa at 425 °C, as expected if the climb bypass by dislocations of the mismatching precipitates is hindered by their elastic stress fields.  相似文献   

17.
The phase equilibria of the Ni–Sn–Zn ternary system were experimentally investigated at 873 K in the framework of the COST Action MP0602. Six ternary phases have been observed and their composition ranges have been determined by EPMA analysis on the annealed alloys. All the binary compounds, excluding Ni3Sn4, show a large solubility of the third element. The isothermal section at 873 K, including 17 three phase fields, has been determined.  相似文献   

18.
Tungsten and aluminum elemental powders with composition W–20 wt.% Al were mechanical alloyed in high energy planetary ball mill. Structural and morphological changes of powder particles after different milling times were studied by X-ray diffractometer, scanning electron microscopy and microhardness measurements. Mechanical alloying of this system led to the formation of W–Al alloy as a result of formation of W/Al layered microstructure having faceted interface between layers. This alloy indicated high microhardness value of about 570 Hv.  相似文献   

19.
W–0.1 wt.%TiC materials with and without the addition of PVP were fabricated by wet-chemical method and spark plasma sintering. The microstructures were characterized by FESEM and TEM. The results revealed that the addition of PVP remarkably improved the uniform dispersion of TiC particles during the synthesis process. W–TiC without PVP showed dispersoids with size of 100–1000 nm were distributed unevenly in the tungsten matrix; only a few particles with the size of about 80–300 nm were located in tungsten grain interior. Conversely, the microstructure of W–TiC with PVP showed that dispersoids were dispersed well and kept about 80 nm. Moreover, the majority of them were uniformly distributed in the grain interior. The EDS analyses revealed that the dispersoids were composed of Ti, C, O and W. TEM observations further verified that the dispersoids were TiC particles. W–TiC with PVP showed better mechanical properties when compared with the samples of W–TiC without PVP and pure tungsten.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号