首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of corn processing (9 kg of dry matter/d of ground dry shelled or 9 kg of dry matter/d of steam rolled) and supplemental hay (0 or 3.2 kg of dry matter/d of alfalfa hay) on milk yield and composition, rumen environment, and starch utilization by lactating cows grazing grass-legume pasture was studied. Twelve rumen cannulated, multiparous Holstein cows in early lactation (95 d in milk), were assigned to a 4 x 4 Latin square design replicated three times. Treatments were ground shelled corn-based concentrate, ground shelled corn-based concentrate plus alfalfa hay, steam-rolled, corn-based concentrate, or steam-rolled, corn-based concentrate plus alfalfa hay. Supplements were fed in equal proportions twice daily. Cows fed steam-rolled corn tended to have higher percentage of milk protein and lower milk urea nitrogen concentrations than cows fed shelled corn. Milk yield was not affected by corn processing or hay supplementation. Intake of pasture forage but not total dry matter intake was reduced by hay supplementation. Starch plus free glucose digestibility in the total tract was not affected by grain processing; however, starch plus free glucose digestibility tended to increase with hay supplementation. Supplemental hay increased starch plus free glucose digestibility through changes in rumen digestion kinetics. Hay supplementation reduced the liquid rate of passage, and tended to reduce particulate turnover. Rumen degradability of pasture forage organic matter tended to be higher for cows fed supplemental hay. Supplemental hay in these diets had a greater impact on starch utilization than corn processing.  相似文献   

2.
Dietary factors that alter the intake of effective fiber were evaluated for their effects on rumen fermentation, digestion, and milk production using a double 4 x 4 quasi-Latin square design with a 2(3) factorial arrangement of treatments. The dietary factors were extent of barley grain processing, coarse (1.60 mm) or flat (1.36 mm); forage-to-concentrate (F:C) ratio, low (35:65) or high (55:45) (dry matter basis); and forage particle length, long (7.59 mm) or short (6.08 mm). Eight lactating cows with ruminal and duodenal cannulas were offered ad libitum access to a total mixed diet and milked twice daily. Dry matter intake was increased by increasing the extent of grain processing. Mean rumen pH was lower for cows fed flatly rolled barley than for cows fed coarsely rolled barley, whereas F:C ratio or forage particle size had no effect on rumen pH. Rumen pH was not correlated with effective NDF intake but tended to be correlated with digestibility of starch in the rumen. Total tract digestibilities of dry matter, organic matter, starch, and neutral detergent fiber were increased by feeding flatly rolled barley or low F:C ratio diets. Milk yield and milk protein content were higher in cows fed flatly rolled barley or low F:C ratio diets. Milk fat content tended to increase with high F:C ratio or long forage particle length but was reduced by feeding flatly rolled barley. In this study, extent of grain processing and intake of ruminal available starch were the most influential factors affecting milk production. Reducing the ratio of F:C improved total digestion and actual milk production. Forage particle length had minimal impact on digestibility and milk production.  相似文献   

3.
This study evaluated the effect of coarse or fine grinding of three forms of corn on the performance of lactating cows. Six diets, fed as total mixed rations, were identical except for the corn portion of the diet. Corn treatments were dry shelled corn, high moisture ensiled ear corn, and high moisture ensiled shelled corn, either coarsely or finely ground. The experimental design was a 6 x 6 Latin square with 36 cows. Eighteen cows were assigned to the six different treatments and were fed once daily. Within this group of 18 cows, six had a ruminal cannula and were used to evaluate nutrient digestibilities and ruminal fermentation. The remaining 18 cows, six of which were ruminally cannulated, were similarly assigned, except they were fed twice daily. In the group fed once daily, milk production and composition were not affected by treatment. Starch digestibility was greater with the high moisture and with the finely ground corn treatments. In addition, the high moisture ensiled corn treatments had reduced ruminal ammonia concentrations. In the group that was fed twice daily, milk production and protein yield were greatest for the finely ground high moisture ensiled shelled corn treatment. Starch utilization was improved by fine grinding. Lower ruminal ammonia concentrations were obtained with the high moisture ensiled corn treatments, and there was a tendency for reduced ammonia concentration with fine grinding. Results indicate that high moisture ensiled corn as well as fine grinding improved nitrogen and starch utilization.  相似文献   

4.
We conducted two experiments to evaluate the effects of corn supplementation, source of corn, and corn particle size on performance and nutrient utilization of lactating dairy cows. In experiment 1, treatments were 1) direct-cut grass-legume forage without supplement, 2) direct-cut forage plus 10 kg DM of ground dry shelled corn-based concentrate, and 3) direct-cut forage plus 10 kg DM of coarsely ground high moisture ear corn-based concentrate. In experiment 2, treatments were 1) direct-cut grass-legume forage plus 10 kg DM of ground dry shelled corn-based concentrate, 2) direct-cut forage plus 10 kg DM of coarsely ground high moisture ear corn-based concentrate, and 3) direct-cut forage plus 10 kg of DM finely ground high moisture ear corn-based concentrate. Both experiments were designed as 3 x 3 Latin squares replicated three times. In experiment 1, yields of milk and milk protein increased with concentrate supplementation, but were not affected by source of corn. Solids-corrected milk yield tended to increase with grain supplementation. Dry matter intake increased with concentrate supplementation, but was not affected by source of corn or corn particle size. Corn supplements decreased ruminal pH and acetate to propionate ratio and increased ruminal propionate concentration. Grain supplements reduced ruminal ammonia concentration, increased concentration of urine allantoin, and increased the urinary allantoin to creatinine ratio. In the second study, fine grinding of high moisture corn reduced fecal starch plus free glucose levels and tended to increase its apparent digestibility. In both experiments, starch plus free glucose intake was higher on the diets with dry corn, but its utilization was not affected by source of corn.  相似文献   

5.
The effect of infusing similar energy equivalents of starch into the rumen, or starch or oil into the abomasum was studied in four midlactation cows in a 4 x 4 Latin square design experiment; controls were ruminally infused with water. Cows were fitted with cannulas in the rumen, abomasum, and ileum, and nutrient digestion in the rumen and small intestine was evaluated with Cr as a digesta marker. Ruminal infusions of starch, or abomasal infusions of starch or oil, were associated with a decrease in voluntary feed organic matter intake. Overall energy intake was reduced in oil-infused, but not in starch-infused cows. Nonstructural carbohydrate digestibility in the rumen and in the small intestine was similar among treatments. In abomasally infused cows 3.4 kg/d of nonstructural carbohydrates was apparently digested in the small intestine. Milk production was reduced in oil-infused cows, but the efficiency of milk energy and protein yield was unaffected by treatments. Plasma glucose, insulin, and IGF-1 concentration, mammary glucose extraction rate, rumen ammonia and plasma urea, and arterial and mammary extraction rate of amino acids were all similar among treatments. Large quantities of starch can be digested in the rumen or small intestine of dairy cows. There appear to be no metabolic advantage to increasing the supply of starch to the rumen or the abomasum of mid-lactation dairy cows maintained on highly concentrated diets and exhibiting a positive energy balance.  相似文献   

6.
Interactions of sources and processing methods for nonstructural carbohydrates may affect the efficiency of animal production. Five rumen-cannulated cows in late lactation were placed in a 5 × 5 Latin square design and fed experimental diets for 2 wk. In the production trial, 54 cows were fed the experimental diets for 12 wk beginning at d 60 in milk. Diets contained 24% corn silage and 22% hay, averaging 20% alfalfa and 2% grass but being adjusted as needed to maintain dietary concentrations of 36% neutral detergent fiber. The control diet contained steam-flaked corn (SFC) and the other diets contained either finely (FGC; 0.8 mm) or coarsely ground corn (CGC; 1.9 mm), factorialized with or without 3.5% liquid feed (LF). The LF diets provided 1.03% of dietary dry matter as supplemental sugar. The FGC decreased rumen pH and concentration of NH3N compared with CGC. The SFC and FGC tended to increase the molar percentage of ruminal propionate and decrease the acetate:propionate ratio. The LF increased molar percentage of ruminal butyrate with FGC but not CGC. The LF tended to decrease starch digestibility with the CGC but not with the FGC. As expected, the SFC and FGC increased total tract starch digestibility. The DMI and milk yield were similar among dietary treatments. Compared with ground corn diets, the SFC tended to decrease milk fat percentage; thus, 3.5% fat-corrected milk and feed efficiency were decreased with SFC. The LF decreased milk protein percentage but had no effect on milk protein yield. The SFC compared with dry ground corn decreased the concentration of milk urea nitrogen. Sugar supplementation using LF appeared to be more beneficial with FGC than CGC. Increasing the surface area by finely grinding corn is important for starch digestibility and optimal utilization of nutrients.  相似文献   

7.
Rumen characteristics and digestive kinetics of brown midrib corn silage were evaluated with five late-lactation (221 DIM +/- 20 d) multiparous cows fitted with ruminal and duodenal cannula. Dietary treatments were applied by using a single reversal design with two 21-d periods where either brown midrib (BM3) or isogenic (ISO) corn silage were included in a total mixed ration formulated to be 40% concentrate and 60% corn silage on a dry matter (DM) basis. Rumen and total tract digestibilities of DM, organic matter, neutral detergent fiber, acid detergent fiber, starch, and N were determined and rumen characteristics evaluated. Apparent rumen DM and organic matter digestibilities were greater for the BM3 corn silage (7.1 and 4.7 percentage units, respectively). Dietary intake and duodenal flow of starch were greater and rumen and total tract starch digestibilities were lower for BM3 corn silage diets than ISO corn silage diets. However, more starch (1.1 kg/d) was apparently digested and absorbed postruminally in cows fed the BM3 corn silage diets. Duodenal flow of neutral detergent fiber was 0.9 kg/d lower, and ruminal (15.9 percentage units) and total tract digestibilities (4.4 percentage units) were higher for BM3 treatment compared with the ISO treatment. Digestive patterns of ADF were similar for the BM3 and ISO treatments. Ruminal pH was lower in the cows fed the BM3 corn silage than those fed the ISO corn silage. As a result of a tendency for decreased N excretion in urine and slight increases in N intake due to increased DM intake, N balance tended to be greater for the BM3 treatment compared with the ISO treatment. These results may partially explain the benefits of feeding BM3 corn silage to cows during early lactation, as the observed increases in fiber component digestibility and improved N economy may combine to enhance DM intake and better support the nutritional demands of milk production for the high producing dairy cow.  相似文献   

8.
Influence of corn processing and frequency of feeding on cow performance   总被引:3,自引:0,他引:3  
Twenty cows, including five fitted with rumen cannulae, were used to study the influence of corn processing and frequency of feeding on milk yield and ruminal fermentation characteristics. Cows were assigned to five treatments in a 5 x 5 Latin square experiment. Each period was 3 wk. Cows were fed 45% forage and 55% grain in a total mixed ration. Diets contained 35% corn either coarsely ground and fed once a day (1x), finely ground (FGC) fed 1x, steam-flaked (SFC) fed lx, FGC fed four times a day (4x), or SFC fed 4x. Processing of corn and frequency of feeding had no influence on dry matter intake. Digestibility of starch was increased 6 and 3 percentage units by feeding SFC corn compared with coarsely and finely ground corn, respectively. Cows fed SFC or FGC produced 4% more milk with lower fat content compared with coarsely ground corn. Increasing the feeding frequency did not improve milk fat content. The fat-corrected milk yield was not different among treatments. Feeding SFC resulted in a low acetate-to-propionate ratio in the rumen fluid than FGC. Cows fed SFC produced 45 and 115 g more milk protein per cow/d than cows fed FGC or coarse, respectively. With the value of increased milk protein observed in this study, it would be more economical to feed SFC or finely ground corn to dairy cows compared with coarse ground. The breakeven price of flaking corn in this study was $32 and $12/metric tonne compared with coarse and FGC, respectively. Based on a survey conducted by the authors, the price of flaking corn in the United States ranged between $7 to $22/metric tonne during year 2000.  相似文献   

9.
The digestibility of starch provided by coarsely ground corn is often low, which reduces the digestible energy (DE) concentration of the diet. We hypothesized that adding exogenous amylase to diets based on coarsely ground dent corn would increase dietary DE resulting in greater milk production. Total-tract nutrient digestibility was measured in a partially replicated Latin square experiment (6 cows and 4 periods) with a 2 × 2 factorial arrangement of treatments. Diets had 26 or 31% starch with or without exogenous amylase (amylase was added to the concentrate mixes at the feed mill). In the low and high starch diets, coarsely ground dry corn (mean particle size = 1.42 mm) provided 43 and 62% of total dietary starch (corn silage provided most of the remaining starch). No treatment interactions were observed. High starch diets had greater dry matter (DM), organic matter, and energy digestibility than low starch diets, and diets with amylase had greater neutral detergent fiber digestibility than diets without amylase. Digestibility of starch averaged 88% and was not affected by treatment. A long-term (98-d) lactation study with 48 Holstein cows (74 d in milk) was conducted using 3 of the diets (low starch diets with and without amylase and the high starch diet without amylase). Addition of amylase to a diet with 26% starch did not affect intake, milk yield, milk composition, body weight, or body condition. Cows fed the diet with 31% starch had greater DM and DE intakes; yields of milk, fat, and protein; and feed efficiency than those fed diets with 26% starch. Milk composition was not affected by starch concentration. Adding exogenous amylase to a lower starch diet did not make the diet nutritionally equivalent to a higher starch diet.  相似文献   

10.
The main objective of this experiment was to examine the effects of the percentage and source of crude protein (CP) and the amount of starch in the diet of dairy cows on ruminal fermentation, nutrient passage to the small intestine, and nutrient digestibility. For this purpose, 6 multiparous Holstein cows fistulated in the rumen and duodenum that averaged 73 d in milk were used in a 6 × 6 Latin square design with a 2 × 3 factorial arrangement of treatments. Two sources of CP [solvent-extracted soybean meal (SBM) and a mixture of SBM and a blend of animal-marine protein supplements plus ruminally protected Met (AMB)] and 3 levels of dietary protein (about 14, 16, and 18%) were combined into 6 treatments. On a dry matter (DM) basis, diets contained 25% corn silage, 20% alfalfa silage, 10% cottonseed, 26.7 to 37% corn grain, and 4 to 13.5% protein supplement. Intakes and digestibilities in the rumen and total tract of DM, organic matter, acid and neutral detergent fiber were unaffected by treatments. Increasing dietary CP from 14 to 18% decreased the intake and apparent ruminal and total tract digestion of starch, but increased the proportion of starch consumed by the cows that was apparently digested in the small intestine. At 14% CP, starch intake and total tract digestion were higher for the AMB diet than for the SBM diet, but the opposite occurred at 16% CP. Across CP sources, increasing CP in the diet from 14 to 18% increased the intakes of N and amino acids (AA), and ruminal outflows of nonammonia N, nonammonia nonmicrobial N, each individual AA except Met, total essential AA, and total AA. Across CP percentages, replacing a portion of SBM with AMB increased the intake of Met and Val and decreased the concentration of ammonia N in the rumen, but did not affect the intake of other essential AA or the intestinal supply of any essential AA and starch. The ruminal outflow of microbial N, the proportional contribution of Lys and Met to total AA delivered to the duodenum, and milk yield were unaffected by treatments. Data suggest that the intake of N by high-producing dairy cows that consume sufficient energy and other nutrients to meet their requirements can be decreased to about 600 to 650 g daily without compromising the supply of metabolizable protein if the source and amount of dietary CP and carbohydrate are properly matched.  相似文献   

11.
This study aimed to evaluate the effects of feeding ground, steam-flaked, or super-conditioned corn on production performance, rumen fermentation, nutrient digestibility, and milk fatty acid (FA) profile of lactating dairy cows. Twenty-four lactating Holstein cows (130 ± 12 d in milk) in a completely randomized block design experiment were assigned to 1 of 3 treatments that contained 31% of one of the following corn types: (1) ground corn; (2) steam-flaked corn; and (3) super-conditioned corn. Actual milk yield was greater in the super-conditioned corn diet than in the steam-flaked and ground corn diets. Dry matter intake, 3.5% fat-corrected milk and energy-corrected milk remained unaffected by treatments; however, milk fat concentration decreased in the super-conditioned corn diet compared with the ground and steam-flaked corn diets. The molar proportion of ruminal acetate decreased in the super-conditioned corn diet compared with the ground and steam-flaked corn diets, whereas the molar proportion of propionate spiked in the super-conditioned corn diet. Ruminal pH dropped in cows fed super-conditioned corn compared with the other 2 diets. A similar pattern was observed for ruminal NH3-N and acetate-to-propionate ratio. Total-tract starch digestibility increased the most in the super-conditioned corn diet followed by the steam-flaked and ground corn diets (96.8, 95.1, and 92.5%, respectively). The neutral detergent fiber digestibility declined in cows fed the super-conditioned corn diet as opposed to other diets (~3.9%). The concentrations of 16:0 and mixed-FA in milk fat dropped in the super-conditioned corn-based diet compared with the ground corn diet. Milk trans-10 18:1 FA increased, whereas trans-11 18:1 FA decreased in cows fed the super-conditioned diet. We concluded that super-conditioned corn has the potential to increase milk yield and starch digestibility in lactating dairy cows; however, reduced milk fat output caused by altering ruminal pH and ruminal FA biohydrogenation pathways may not be desirable in certain markets. Future research is warranted to investigate how super-conditioned corn affects feed efficiency.  相似文献   

12.
A 4 x 4 Latin square design with four multiparous cows in midlactation fitted with duodenal cannulae was used to determine the effect of synchronization of protein and starch degradation in the rumen on nutrient availability in lactating cows. As major starch and protein sources, diets contained: barley plus cottonseed meal; barley plus brewers dried grains; milo plus cottonseed meal; and milo plus brewers dried grains. Experimental periods were 12 d and consisted of 8 d adjustment and 4 d collection. Chromium oxide was used as the marker to determine digestibility and nutrient flow from the rumen. Microbial protein synthesis was estimated from nucleic acid content in duodenal samples. Apparent and corrected rumen digestibilities of DM, organic matter, CP, and starch were higher for diets containing barley than milo but were not affected by protein source. For diets containing barley and milo, starch digested postruminally averaged 820 and 2190 g/d and percentage digestibility was 70 and 77%. No difference among diets was found in DM, organic matter, and CP flow to the small intestine; however, microbial N synthesis was higher in diets containing barley than in diets containing milo.  相似文献   

13.
Four multiparous cows with cannulas in the rumen and proximal duodenum were used in early lactation in a 4 x 4 Latin square experiment to investigate the effect of method of application of a fibrolytic enzyme product on digestive processes and milk production. The cows were given ad libitum a total mixed ration (TMR) composed of 57% (dry matter basis) forage (3:1 corn silage:grass silage) and 43% concentrates. The TMR contained (g/kg dry matter): 274 neutral detergent fiber, 295 starch, 180 crude protein. Treatments were TMR alone or TMR with the enzyme product added (2 kg/1000 kg TMR dry matter) either sprayed on the TMR 1 h before the morning feed (TMR-E), sprayed only on the concentrate the day before feeding (Concs-E), or infused into the rumen for 14 h/d (Rumen-E). There was no significant effect on either feed intake or milk yield but both were highest on TMR-E. Rumen digestibility of dry matter, organic matter, and starch was unaffected by the enzyme. Digestibility of NDF was lowest on TMR-E in the rumen but highest postruminally. Total tract digestibility was highest on TMR-E for dry matter, organic matter, and starch but treatment differences were nonsignificant for neutral detergent fiber. Corn silage stover retention time in the rumen was reduced by all enzyme treatments but postruminal transit time was increased so the decline in total tract retention time with enzymes was not significant. It is suggested that the tendency for enzymes to reduce particle retention time in the rumen may, by reducing the time available for fibrolysis to occur, at least partly explain the variability in the reported responses to enzyme treatment.  相似文献   

14.
《Journal of dairy science》2023,106(7):4666-4681
Corn silage is one of the most common ingredients fed to dairy cattle. Advancement of corn silage genetics has improved nutrient digestibility and dairy cow lactation performance in the past. A corn silage hybrid with enhanced endogenous α-amylase activity (Enogen, Syngenta Seeds LLC) may improve milk production efficiency and nutrient digestibility when fed to lactating dairy cows. Furthermore, evaluating how Enogen silage interacts with different dietary starch content is important because the ruminal environment is influenced by the amount of rumen fermentable organic matter consumed. To evaluate the effects of Enogen corn silage and dietary starch content, we conducted an 8-wk randomized complete block experiment (2-wk covariate period, 6-wk experimental period) with a 2 × 2 factorial treatment arrangement using 44 cows (n = 11/treatment; 28 multiparous, 16 primiparous; 151 ± 42 d in milk; 668 ± 63.6 kg of body weight). Treatment factors were Enogen corn silage (ENO) or control (CON) corn silage included at 40% of diet dry matter and 25% (LO) or 30% (HI) dietary starch. Corn silage used in CON treatment was a similar hybrid as in ENO but without enhanced α-amylase activity. The experimental period began 41 d after silage harvest. Feed intake and milk yield data were collected daily, plasma metabolites and fecal pH were measured weekly, and digestibility was measured during the first and final weeks of the experimental period. Data were analyzed using a linear mixed model approach with repeated measures for all variables except for body condition score change and body weight change. Corn silage, starch, week, and their interactions were included as fixed effects; baseline covariates and their interactions with corn silage and starch were also tested. Block and cow served as the random effects. Plasma glucose, insulin, haptoglobin, and serum amyloid A concentrations were unaffected by treatment. Fecal pH was greater for cows fed ENO versus CON. Dry matter, crude protein, neutral detergent fiber, and starch digestibility were all greater for ENO than CON during wk 1, but differences were less by wk 6. The HI treatments depressed neutral detergent fiber digestibility compared with LO. Dry matter intake (DMI) was not affected by corn silage but was affected by the interaction of starch and week; in wk 1, DMI was similar but by wk 6, cows fed HI had 1.8 ± 0.93 kg/d less DMI than LO cows. Milk, energy-corrected milk, and milk protein yields were 1.7 ± 0.94 kg/d, 1.3 ± 0.70 kg/d, and 65 ± 27 g/d greater for HI than LO, respectively. In conclusion, ENO increased digestibility but it did not affect milk yield, component yields, or DMI. Increasing dietary starch content improved milk production and feed efficiency without affecting markers of inflammation or metabolism.  相似文献   

15.
Effects of full-fat crushed rapeseed (0, 1, or 2 kg/d) on rumen and total digestion, rumen biohydrogenation, and rumen microbial protein synthesis were studied in lactating cows. Rumen digestibilities (%) of DM, NDF, and cellulose were 52.1, 46.1, and 51.8, respectively, for control. Rapeseed decreased rumen and total DM digestibilities and proportion of DM digested in the rumen. Rumen digestibility of cellulose was decreased by rapeseed, but this was apparently compensated by hindgut fermentation. Dry matter, NDF, and hemicellulose digestibilities were compensated at 1 kg but not at 2 kg/d. Biohydrogenation of 18:1 fatty acids increased with increasing dietary fat, whereas that of 18:2 and 18:3 was 85% on all diets. Fatty acid digestibility was not different among diets. Microbial nitrogen in the duodenum increased from 142 g/d for control to 191 g/d for 1 and 2 kg/d. Efficiency of microbial protein synthesis (grams of microbial nitrogen per kilogram organic matter apparently digested in the rumen) was 17.3, 24.8, and 26.6 for 0, 1, and 2 kg/d. Slow release of fat from crushed rapeseed minimized negative effects on rumen metabolism; 1 to 2 kg/d of full-fat crushed rapeseed may be fed to lactating cows without detrimental metabolic effects.  相似文献   

16.
The objective of this study was to evaluate the effect of an exogenous amylase preparation on digestion of low- and high-starch diets in dairy cattle. Rumen and total-tract nutrient digestibility were measured in a 4 × 4 Latin square design with 28-d periods using 4 first-lactation cows cannulated at the rumen and duodenum. Corn silage-based diets had 20 or 30% starch, attained by changing the composition of concentrate, with or without addition of an exogenous amylase preparation. Effects of the enzyme additive were observed on ruminal digestibility but not at the total-tract level. Ruminal digestibility of starch increased from 75% in control to 81% with amylase supplementation. This difference in ruminal starch digestion was compensated postruminally, so that the total-tract digestibility of starch was almost complete and did not differ between treatments. The amylase supplement also increased the true ruminal digestibility of organic matter but did not affect microbial N flow to the duodenum. Amylase supplement reduced the proportion of acetate and butyrate and increased that of propionate, particularly in the high-starch diet, where it tended to increase the concentration of total volatile fatty acids in the rumen. Other effects were a higher amylase activity in the solid-associated microbial community and a tendency for lower numbers of protozoa. In contrast, we observed no changes in intake, production, dry matter and fiber (neutral detergent fiber and acid detergent fiber) digestibility, or ruminal digestion, and no or small changes on selected fibrolytic and amylolytic bacteria and on the microbial community in general. We conclude that the exogenous amylase improved starch digestion in the rumen in first-lactation cows with moderate intake and production levels.  相似文献   

17.
Nineteen lactation trials (43 grain processing comparisons) are summarized, in addition to digestibility and postabsorptive metabolism studies. The net energy for lactation (NEL) of steam-flaked corn or sorghum grain is about 20% greater than the NEL for dry-rolled corn or sorghum. Based on lactational performance, steam-flaked sorghum grain is of equal value to steam-flaked corn, and steam-flaked corn is superior to steam-rolled corn. Steam-flaking of corn or sorghum compared to steam-rolling of corn or dry-rolling of corn or sorghum consistently improves milk production and milk protein yield. This result is because of a much greater proportion of dietary starch fermented in the rumen, enhanced digestibility of the smaller fraction of dietary starch reaching the small intestine, and increased total starch digestion. Steam-flaking increases cycling of urea to the gut, microbial protein flow to the small intestine, and estimated mammary uptake of amino acids. Steam-rolling compared to dry-rolling of barley or wheat did not alter total starch digestibilities in two trials, one with each grain source. Lactation studies with these processing comparisons have not been reported. Most cited studies have been with total mixed rations (TMR) and alfalfa hay as the principal forage. Additional studies are needed with lactating cows fed steam-flaked corn or sorghum in TMR containing alfalfa or corn silage. Optimal flake density of steam-processed corn or sorghum grain appears to be about 360 g/L (approximately 28 lb/bu).  相似文献   

18.
The effects of increasing concentrations of dried, pelleted beet pulp substituted for high-moisture corn on digestion and ruminal digestion kinetics were evaluated using eight ruminally and duodenally cannulated multiparous Holstein cows in a duplicated 4 x 4 Latin square design with 21-d periods. Cows were 79 +/- 17 (mean +/- SD) d in milk at the beginning of the experiment. Experimental diets with 40% forage (corn silage and alfalfa silage) and 60% concentrate contained 0, 6.1, 12.1, or 24.3% beet pulp substituted for high-moisture corn on a dry matter basis. Diet concentrations of neutral detergent fiber (NDF) and starch were 24.3 and 34.6% (0% beet pulp), 26.2 and 30.5% (6% beet pulp), 28.0 and 26.5% (12% beet pulp), and 31.6 and 18.4% (24% beet pulp), respectively. Ruminal dry matter pool decreased and NDF turnover rate increased as dietary beet pulp content increased. Potentially digestible NDF was digested more extensively and at a faster rate in the rumen with increasing beet pulp, resulting in increased total tract NDF digestibility. Passage rates of potentially digestible NDF and of indigestible NDF were not affected by treatment. True ruminal digestibility of starch decreased with increasing beet pulp substitution. This was caused by a linear increase in starch passage rate, possibly because of increasing ruminal fill, and a linear decrease in digestion rate of starch in the rumen, possibly because of reduced amylolytic enzyme activity for lower-starch diets. Although true ruminal starch digestibility decreased when more beet pulp was fed, whole tract starch digestibility was not affected because of compensatory digestion of starch in the intestines. Due to more thorough digestion of fiber in diets containing more beet pulp, whole-tract digestibility of organic matter increased linearly, and intake of digestible organic matter was not affected. Partially replacing high-moisture corn with beet pulp in low-forage diets increased fiber digestibility without reducing whole-tract starch digestibility.  相似文献   

19.
Our objective was to evaluate the relative effects of endosperm type and conservation method of corn grain on ruminal kinetics, site of nutrient digestion, and flow of nitrogen fractions to the duodenum in lactating dairy cows. Seven ruminally and duodenally cannulated Holstein cows (73 ± 39 d in milk; mean ± SD) were used in a duplicated 4 × 4 Latin square design with 21-d periods. A 2 × 2 factorial arrangement of treatments was used, with main effects of corn grain endosperm type (floury or vitreous) and conserved as dry ground corn (DGC) or high-moisture corn (HMC). Rations were formulated to contain 27.0% starch, 26.6% neutral detergent fiber (NDF), 19.1% forage NDF, and 16.5% crude protein. Corn grain treatments supplied 86.6% of dietary starch, and alfalfa silage was the sole forage. True ruminal starch digestibility was increased by HMC compared with DGC (87.2 vs. 64.3%) and by floury compared with vitreous corn grain (83.7 vs. 67.7%). The increase for HMC compared with DGC was because of an increase in the degradation rate (33.8 vs. 23.1%/h) and a decrease in passage rate of starch (7.6 vs. 15.2%/h). The increase for floury compared with vitreous corn grain was because of an increase in the degradation rate (31.5 vs. 25.4%/h) and a decrease in rate of starch passage from the rumen (7.9 vs. 14.9%/h). Apparent total-tract starch digestibility was increased by HMC compared with DGC and by floury compared with vitreous corn, but the increase for floury corn was greater for the DGC treatment. Dry ground corn compared with HMC tended to increase nonammonia N flow to the duodenum (466 vs. 431 g/d) by increasing flow of nonammonia nonmicrobial N (211 vs. 111 g/d) despite a decrease in microbial N flow (255 vs. 320 g/d). Vitreous corn increased nonammonia nonmicrobial N flow to the duodenum (187 vs. 135 g/d) compared with floury corn, but microbial N flow to the duodenum was not affected by endosperm type. Efficiency of microbial N production was not affected by treatment. Endosperm type and conservation method of corn grain greatly affect digestion kinetics and ruminal digestibility of starch as well as flow of N fractions to the duodenum and should be considered during diet formulation for lactating cows.  相似文献   

20.
The objective of this study was to determine the effect of replacing on isonitrogenous and isoenergetic basis soybean meal (SBM) and corn grain with ground or rolled faba bean (FB; Vicia faba major var. Baie-Saint-Paul) in dairy cow diets (17% of diet dry matter) on nutrient digestion, rumen fermentation, N utilization, methane production, and milk performance. For this purpose, 9 lactating cows were used in a replicated 3 × 3 Latin square design (35-d period) and fed (ad libitum) a total mixed ration (forage:concentrate ratio = 59:41 on a dry matter basis). In the concentrate portion, SBM and corn grain (control diet) were completely and partially replaced, respectively, with either ground or rolled FB. Ruminal degradability (in sacco) of crude protein was higher for ground FB (79.4%) compared with SBM (53.3%) and rolled FB (53.2%). Including FB in the diet did not affect dry matter intake, milk production, and milk composition. Experimental treatment had no effect on total volatile fatty acid concentration, acetate-to-propionate ratio, and protozoa numbers. Compared with cows fed the control diet, ruminal NH3 concentration increased and tended to increase for cows fed ground FB and rolled FB, respectively; however, we found no difference in ruminal NH3 concentration between the 2 processed FB. Apparent total-tract digestibility of crude protein was similar between cows fed the control diet and cows fed rolled FB and tended to increase for cows fed ground FB compared with cows fed the control diet. Feeding rolled FB decreased CP digestibility compared with feeding ground FB. Urinary and manure (feces + urine) N excretion (g/d or as a proportion of N intake) were not affected by the inclusion of FB in the diet. Enteric CH4 production was similar among the experimental diets. Results from this study show that including FB (17% of dietary dry matter) at the expense of SBM and corn grain in the diet had no effect on milk production, N excretion, and enteric CH4 production of dairy cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号