首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
WC-(W,Cr)2C-Ni coatings were prepared by atmospheric plasma spraying (APS) with different spraying powers. The effect of spraying power on microstructure, phase composition, hardness, fracture toughness, and oscillating dry friction and wear behaviors of the coatings were studied. Simultaneously, the microstructure and properties of the as-sprayed coatings were compared with those of WC-17Co coating prepared under the optimal spraying power. It was found that spraying power had significant effect on the molten degree of feedstock powder and phase composition as well as microstructure and properties of WC-(W,Cr)2C-Ni coatings. WC-(W,Cr)2C-Ni coating deposited at a moderate spraying power of 22.5?kW had the highest fracture toughness and the best wear resistance. WC-17Co coating obtained under the moderate spraying power had poor fracture toughness and wear resistance. Moreover, the four kinds of coatings were all dominated by subsurface cracking and removal of materials when sliding against Si3N4 ball under unlubricated conditions.  相似文献   

2.
A novel electromagnetically accelerated plasma spraying technique was applied to mixtures of αSi3N4, and alumina, yttria, and silica additives to deposit thin coatings (50–100 μm) onto mirror-polished stainless steel surfaces. The dense coatings consisted of crystalline αSi3N4 with minor amounts of β'SiAlON, traces of βSi3N4 and Y3Al5O12 as well as a quinary Si−Al−N−O−Y glass. The adhesion strengths depended on the powder particle size showing values of>77 MPa for coarse powders (median grain size 25 μm) and>67 MPa for fine powders (median grain size 8 μm). The average indentation hardnesses were 450 HV0.025 (coarse powder) and 620 HV0.025 (fine powder); the sliding wear resistances were comparable to those of sintered Si3N4 used as counterbody in a pin-on-disc friction test. The friction coefficient showed surprisingly large values (1.0–1.1 in water and 1.3–1.4 in air), suggesting application of such coatings as tribological high-friction surfaces.  相似文献   

3.
Atmospheric plasma spraying (APS) is a most versatile thermal spray method for depositing alumina (Al2O3) coatings, and detonation gun (D-gun) spraying is an alternative thermal spray technology for depositing such coatings with extremely good wear characteristics. The present study is aimed at comparing the characteristics of Al2O3 coatings deposited using the above techniques by using Taguchi experimental design. Alumina coating experiments were conducted using a Taguchi fractional-factorial (L8) design parametric study to optimize the spray process parameters for both APS and D-gun. The Taguchi design evaluated the effect of four APS and D-gun spray variables on the measured coating attributes. The coating qualities evaluated were surface roughness, porosity, microhardness, abrasion, and sliding wear. The results show that the coating quality is directly related to the corresponding coating microstructure, which is significantly influenced by the spray parameters employed. Though it is evident that the D-gun-sprayed coatings consistently exhibit dense and uniform microstructure, higher hardness, and superior tribological performance, the attainment of suitable plasma-sprayed coatings can be improved by employing the Taguchi analysis.  相似文献   

4.
The detonation spraying is one of the most promising thermal spray variants for depositing wear and corrosion resistant coatings. The ceramic (Al2O3), metallic (Ni-20 wt%Cr) , and cermets (WC-12 wt%Co) powders that are commercially available were separated into coarser and finer size ranges with relatively narrow size distribution by employing centrifugal air classifier. The coatings were deposited using detonation spray technique. The effect of particle size and its distribution on the coating properties were examined. The surface roughness and porosity increased with increasing powder particle size for all the coatings consistently. The feedstock size was also found to influence the phase composition of Al2O3 and WC-Co coatings; however does not influence the phase composition of Ni-Cr coatings. The associated phase change and %porosity of the coatings imparted considerable variation in the coating hardness, fracture toughness, and wear properties. The fine and narrow size range WC-Co coating exhibited superior wear resistance. The coarse and narrow size distribution Al2O3 coating exhibited better performance under abrasion and sliding wear modes however under erosion wear mode the as-received Al2O3 coating exhibited better performance. In the case of metallic (Ni-Cr) coatings, the coatings deposited using coarser powder exhibited marginally lower-wear rate under abrasion and sliding wear modes. However, under erosion wear mode, the coating deposited using finer particle size exhibited considerably lower-wear rate.  相似文献   

5.
Dense, crack-free, uniform, and well-adhered environmental barrier coatings (EBCs) are required to enhance the environmental durability of silicon (Si)-based ceramic matrix composites in high pressure, high gas velocity combustion atmospheres. This paper represents an assessment of different thermal spray techniques for the deposition of Yb2Si2O7 EBCs. The Yb2Si2O7 coatings were deposited by means of atmospheric plasma spraying (APS), high-velocity oxygen fuel spraying (HVOF), suspension plasma spraying (SPS), and very low-pressure plasma spraying (VLPPS) techniques. The initial feedstock, as well as the deposited coatings, were characterized and compared in terms of their phase composition. The as-sprayed amorphous content, microstructure, and porosity of the coatings were further analyzed. Based on this preliminary investigation, the HVOF process stood out from the other techniques as it enabled the production of vertical crack-free coatings with higher crystallinity in comparison with the APS and SPS techniques in atmospheric conditions. Nevertheless, VLPPS was found to be the preferred process for the deposition of Yb2Si2O7 coatings with desired characteristics in a controlled-atmosphere chamber.  相似文献   

6.
Thick TiB2-TiC0.3N0.7 based composite coatings were deposited by reactive plasma spraying (RPS) successfully in air. The influence to the coating properties (morphology, Vickers microhardness and corrosion resistant property) with Cr addition in the thermal spray powder and TiB2-TiC0.3N0.7 based coatings treated by laser were investigated. The phase composition, structure and properties of composite coatings were studied using XRD, SEM, EDS, Vickers microhardness and electrochemical testers. The results show that the Vickers microhardness values and the density of laser surface treated coatings are improved significantly. The Cr addition in the thermal spray powder can increase the density, improve the wettability of ceramic phases, uniform the phase distribution and enhance the corrosion-resistant property of coatings. However, due to lower microhardness of metal Cr than ceramic phases in coatings, the Vickers microhardness values of plasma sprayed coatings and plasma sprayed coatings with laser surface treatment are a little lower than that of each coating without Cr addition in the thermal spray powder.  相似文献   

7.
Cold spraying enables high quality Cu coatings to be deposited for applications where high electrical and/or thermal conductivity is needed. Fully dense Cu coatings can provide an effective corrosion barrier in specific environments. The structure of cold-sprayed Cu coatings is characterized by high deformation which imparts excellent properties. Coating properties depend on powder, the cold spray process and post treatments. First of all, powder characteristics have a strong influence on the formation of pure coatings. Secondly, cold spraying provides dense, adherent, and conductive coatings by using HPCS and LPCS. Furthermore, an addition of Al2O3 particles to the Cu powder in LPCS process significantly improves coating properties. Also, heat treatments improve electrical conductivity. This study summarizes optimal characteristics of Cu powder optimized for cold spraying, achieving high coating quality and compares properties of HPCS Cu, LPCS Cu and Cu+Al2O3 coatings prepared from the same batch of OFHC Cu powder.  相似文献   

8.
马壮  邹积峰  王伟  李智超 《焊接学报》2011,32(12):46-50
采用机械球磨和PVA(聚乙烯醇)造粒制成喷涂复合粉末,采用热化学反应火焰喷涂技术,在镁合金AZ31B表面制备Al2O3,基复相陶瓷涂层.利用x射线衍射(XRD)、扫描电镜(SEM)分析了喷涂复合粉末和复合陶瓷涂层的组成及形貌,并对涂层的热震性能、致密性、显微硬度和耐磨性进行测试.结果表明,复合粉末经12h球磨后有化学反...  相似文献   

9.
The deposition of cold-sprayed titanium on various substrates is studied in this work. A rather coarse powder of titanium (−70 + 45 μm) was sprayed under uniform spraying conditions using a cold spray system onto five different substrates: two aluminum-based alloys (AISI 1050-H16 and AISI 2017-T4), copper, stainless steel AISI 304L, and Ti-6Al-4V. All the spraying experiments were carried out using alternatively nitrogen (N2) or helium (He) as the process gas. Thick coatings were formed on the various substrates, with the exception of the AISI 2017 substrate. When N2 was used as the process gas, only a few particles remained adhering to the AISI 2017. The thick pre-existing superficial oxide layer on AISI 2017, which was detected by Electron MicroProbe Analysis (EPMA), appeared to prevent adhesion of cold-sprayed titanium particles. The interaction of the sprayed particles with the various substrates was also studied by means of numerical simulations to better understand the adhesion mechanisms. The microstructure and the characteristics of the coatings were investigated. Deposition efficiency and coating density were found both to be strongly improved by spraying helium as the process gas.  相似文献   

10.
Nanostructured WC-12Co coatings were deposited by high velocity oxy-fuel (HVOF) spraying with an agglomerated powder. The effect of flame conditions on the microstructure of the nanostructured coatings was investigated. The wear properties of the coatings were characterized using a dry rubber-wheel wear test. The results show that the nanostructured WC-Co coatings consist of WC, W2C, W and an amorphous binder phase. The microstructure of the coating is significantly influenced by the ratio of oxygen flow to fuel flow. Under the lower ratio of oxygen/fuel flow, the nanostructured coating presents a relative dense microstructure and severe decarburization of WC phase occurs during spraying. With increasing ratio of oxygen/fuel flow, the bonding of WC particles in the coating becomes loose resulting from the original structure of feedstock and the decarburization of WC becomes less owing to limited heating to the powder. Both the decarburization of WC particles in spraying and the bonding among WC particles in the coatings affect the wear performance. The examination of the worn surfaces of the nanostructured coatings reveals that the dominant wear mechanisms would be spalling from the interface of WCCo splats when spray particles undergo a limited melting. While the melting state of the spray particles is improved,the dominant wear mechanisms become the plastic deformation and plowing of the matrix and spalling of WC particles from the matrix.  相似文献   

11.
在基电解液中加入氮化硅纳米颗粒,对TC4钛合金进行微弧氧化(MAO)处理,研究了Si3N4浓度对微弧氧化层表面形貌、耐蚀性和耐磨性的影响。添加Si3N4的MAO层呈现多孔结构,当Si3N4浓度为1 g/L时,涂层厚度最大,且经过7 d的酸腐蚀试验,该涂层的耐蚀性良好,腐蚀速率最低,约为0.057 mg·cm-2·d-1。随着Si3N4的加入,MAO涂层的抗菌性能先升高后降低。当Si3N4的添加量为1 g/L时,该MAO层的抗菌性能最好。Si3N4的加入能明显提高涂层在模拟海水中的耐磨性。当Si3N4的添加量为3和4 g/L时,所得涂层的摩擦系数低且稳定,且添加3 g/L Si3N4制备来的MAO涂层表现出优异的耐磨性。  相似文献   

12.
Pure Al and 6061 aluminium alloy based Al2O3 particle-reinforced composite coatings were produced on AZ91E substrates using cold spray. The strength of the coating/substrate interface in tension was found to be stronger than the coating itself. The coatings have corrosion resistance similar to that of bulk pure aluminium in both salt spray and electrochemical tests. The wear resistance of the coatings is significantly better than that of the AZ91 Mg substrate, but the significant result is that the wear rate of the coatings is several decades lower than that of various bulk Al alloys tested for comparison. The effect of post-spray heat treatment, the volume fraction of Al2O3 within the coating and of the type of Al powder used in the coatings on the corrosion and wear resistance was also discussed.  相似文献   

13.
Wear-Resistant Amorphous Iron-Based Flame-Sprayed Coatings   总被引:1,自引:0,他引:1  
The flame-spraying process (powder and wire) was used to spray Nanosteel SHS-7170 powder and Eutectic-Castolin EnDOtec DO-390N wire onto aluminum and mild steel substrates to produce partially amorphous iron-based coatings. The phase content and the wear resistance of the coatings were evaluated in the as-sprayed condition only. The results obtained showed that the powder and wire flame iron-based coatings performed relatively well in terms of wear resistance. The coating microstructure, phase content, hardness, and wear performance all depended strongly on the spraying parameters used. This study showed that amorphous iron-based coatings with good wear resistance could be produced using the flame-spray process, showing that this process appeared to be a suitable inexpensive alternative to plasma or high velocity oxygen-fuel spraying processes.  相似文献   

14.
Effects of plasma spraying conditions on wear resistance of nanostructured Al2O3-8 wt.%TiO2 coatings plasma-sprayed with nanopowders were investigated in this study. Five kinds of nanostructured coatings were plasma-sprayed on a low-carbon steel substrate by varying critical plasma spray parameter (CPSP) and spray distance. The coatings consisted of fully melted region of γ-Al2O3 and partially melted region, and the fraction of the partially melted regions and pores decreased with increasing CPSP or decreasing spray distance. The hardness and wear test results revealed that the hardness of the coatings increased with increasing CPSP or decreasing spray distance, and that the hardness increase generally led to the increase in wear resistance, although the hardness and wear resistance were not correlated in the coating fabricated with the low CPSP. The main wear mechanism was a delamination one in the coatings, but an abrasive wear mode also appeared in the coating fabricated with the low CPSP. According to these wear mechanisms, the improvement of wear resistance in the coating fabricated with the low CPSP could be explained because the improved resistance to fracture due to the presence of partially melted regions might compensate a deleterious effect of the hardness decrease.  相似文献   

15.
Micro-laminates and nanocomposites of Al2O3 and ZrO2 can potentially exhibit higher hardness and fracture toughness and lower thermal conductivity than alumina or zirconia alone. The potential of these improvements for abrasion protection and thermal barrier coatings is generating considerable interest in developing techniques for producing these functional coatings with optimized microstructures. Al2O3-ZrO2 composite coatings were deposited by suspension thermal spraying (APS and HVOF) of submicron feedstock powders. The liquid carrier employed in this approach allows for controlled injection of much finer particles than in conventional thermal spraying, leading to unique and novel fine-scaled microstructures. The suspensions were injected internally using a Mettech Axial III plasma torch and a Sulzer-Metco DJ-2700 HVOF gun. The different spray processes induced a variety of structures ranging from finely segregated ceramic laminates to highly alloyed amorphous composites. Mechanisms leading to these structures are related to the feedstock size and in-flight particle states upon their impact. Mechanical and thermal transport properties of the coatings were compared. Compositionally segregated crystalline coatings, obtained by plasma spraying, showed the highest hardness of up to 1125 VHN3 N, as well as the highest abrasion wear resistance (following ASTM G65). The HVOF coating exhibited the highest erosion wear resistance (following ASTM G75), which was related to the toughening effect of small dispersed zirconia particles in the alumina-zirconia-alloyed matrix. This microstructure also exhibited the lowest thermal diffusivity, which is explained by the amorphous phase content and limited particle bonding, generating local thermal resistances within the structure.  相似文献   

16.
Plasma spraying is one of the most versatile techniques used to form coatings for protection against oxidation, corrosion, and wear. The plasma spraying is ideally suited for refractory materials, but there are a number of variables that need to be controlled to obtain dense coatings. In spite of considerable progress made in the theoretical understanding of this complex process, there is a need for a simple method to evaluate the interaction between the plasma flame and powder particles that form the coatings. As reported in the literature, this involves metallographic observation of the powders collected from the plasma. In the present study, the structure and morphology of plasma-sprayed splats are experimentally investigated using different power levels and spray distances for alumina powder. The results show that the splashing occurs during splatting of a completely molten droplet. It is found that at higher power levels and shorter spray distances, spreading of molten droplets improves considerably.  相似文献   

17.
Silicate glass and glass-silicon nitride composite coatings were atmospheric plasma sprayed onto mild carbon steel substrates under varying process parameters such as torch power and H2/Ar ratios. The x-ray analysis revealed that Si3N4 in the composite coatings could be preserved under the harsh environmental conditions of the plasma spray process. The presence of Si3N4 as the reinforcement phase to the glass matrix conferred higher hardness properties to the coatings.  相似文献   

18.
Corrosion Properties of Cold-Sprayed Tantalum Coatings   总被引:2,自引:0,他引:2  
Cold spraying enables the production of pure and dense metallic coatings. Denseness (impermeability) plays an important role in the corrosion resistance of coatings, and good corrosion resistance is based on the formation of a protective oxide layer in case of passivating metals and metal alloys. The aim of this study was to investigate the microstructural details, denseness, and corrosion resistance of two cold-sprayed tantalum coatings with a scanning electron microscope and corrosion tests. Polarization measurements were taken to gain information on the corrosion properties of the coatings in 3.5 wt.% NaCl and 40 wt.% H2SO4 solutions at room temperature and temperature of 80 °C. Standard and improved tantalum powders were tested with different spraying conditions. The cold-sprayed tantalum coating prepared from improved tantalum powder with advanced cold spray system showed excellent corrosion resistance: in microstructural analysis, it showed a uniformly dense microstructure, and, in addition, performed well in all corrosion tests.  相似文献   

19.
Molybdenum disilicide (MoSi2) coatings were deposited on carbon steel by air plasma spraying technology with different feedstock powder sizes (i.e., powder A: ?15 + 2.5 μm, powder B: ?30 + 15 μm, powder C: ?54 + 30 μm, powder D: ?74 + 54 μm and powder E: ?106 + 74 μm). Phase composition and microstructure of coatings were characterized by x-ray diffraction (XRD) and scanning electron microscope. The bonding strength and microhardness of coatings were also evaluated. The XRD results show that there exists mutual transformation between T-MoSi2 and H-MoSi2 phase and part of Mo-rich phases are formed because of oxidization during the spraying process. With the increase of spraying powders size, the content of Mo-rich phases (Mo or Mo5Si3) and molybdenum oxide (MoO3) in coatings decreases, and that of disilicide-rich phase (MoSi2) in coatings increases. The oxidation degree of MoSi2 particle gradually decreases during the spraying process with the increase of spraying powders size. The MoSi2 is the main phase of the as-sprayed coatings when the spraying powders size is beyond 30 μm. With the increase of spraying powders size, the porosity of the as-sprayed coating increases, and the bonding strength of the coating gradually decreases. The hardness of coatings first increases and then decreases with the increase of spraying powders size.  相似文献   

20.
Air plasma-sprayed conventional alumina-titania (Al2O3-13wt.%TiO2) coatings have been used for many years in the thermal spray industry for antiwear applications, mainly in the paper, printing, and textile industries. This work proposes an alternative to the traditional air plasma spraying of conventional aluminatitania by high-velocity oxyfuel (HVOF) spraying of nanostructured titania (TiO2). The microstructure, porosity, hardness (HV 300 g), crack propagation resistance, abrasion behavior (ASTM G65), and wear scar characteristics of these two types of coatings were analyzed and compared. The HVOF-sprayed nanostructured titania coating is nearly pore-free and exhibits higher wear resistance when compared with the air plasma-sprayed conventional alumina-titania coating. The nanozones in the nanostructured coating act as crack arresters, enhancing its toughness. By comparing the wear scar of both coatings (via SEM, stereoscope microscopy, and roughness measurements), it is observed that the wear scar of the HVOF-sprayed nanostructured titania is very smooth, indicating plastic deformation characteristics, whereas the wear scar of the air plasma-sprayed alumina-titania coating is very rough and fractured. This is considered to be an indication of a superior machinability of the nanostructured coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号