首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To examine the association of peripheral blood mononuclear cell (PBMC) derived interleukin 1beta (IL-1beta), IL-1 receptor antagonist (IL-1Ra), tumor necrosis factor alpha (TNF-alpha), and radiographic osteoarthritis (OA) in the elderly. METHODS: A total of 703 subjects (436 women, 267 men, mean age 78.5+/-4.5 yrs) had both knee and hand radiographs, and cytokines were measured during the 22nd biennial examination of the Framingham Cohort. PBMC derived IL-1beta , IL-1Ra, and TNF-alpha production was assessed using a non-cross reacting polyclonal radioimmunoassay. Knee OA was defined as a score of > 2 using a modified Kellgren and Lawrence scale. The presence of osteophytes and joint space narrowing were scored separately on a 0-3 scale, in which disease was defined a priori as a score > 0 for each feature. Sex-specific odds ratios were calculated for knee OA after adjusting for weight, history of knee injury, and use of estrogen and nonsteroidal antiinflammatory drugs. RESULT: No uniform associations were found for IL-1beta or IL-1Ra in men, or for TNF-alpha production and radiographic OA in either sex. We found possible associations for the highest levels of IL-1beta production and the presence of knee osteophytes [OR=2.0 (1.2-3.5)] and joint space narrowing [OR=1.7 (1.1-2.8)] in women. Our data suggested a possible protective effect for IL-1Ra production and hand OA in women [OR=0.6 (0.4-1.0)]. CONCLUSION: We found no consistent association of PBMC cytokine production and radiographic OA. However, women with the highest production of IL-1beta and IL-1Ra had respectively higher rates of knee OA and lower rates of hand OA than expected.  相似文献   

2.
3.
OBJECTIVES: Previous studies have shown that biomaterials can activate macrophages to produce cytokines and promote an inflammatory response. Although the toxicity of many metal ions has been extensively investigated, little is known about the ability of these ions to alter cytokine release from macrophages. Yet the release of these ions from biomaterials has been well documented. Previous studies indicated that alterations in cytokine release might be expected because metal ions alter protein production in macrophages at sub-toxic concentrations. Thus, the hypothesis of this study was that metal ions can alter the secretion of cytokines from macrophages at sub-toxic concentrations. METHODS: The release of interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha) from macrophages was investigated when the macrophages were exposed to metal ions, with or without lipopolysaccharide (LPS), a component of dental plaque. Human THP-1 macrophages were exposed to ions of Ag, Au, Cu, Hg, and Ni for 24 h. In half of the cultures, LPS was added for the last 4 h. The release of IL-1 beta and TNF-alpha into the medium was measured using enzyme-linked immunosorbent assays. ANOVA and Tukey multiple comparison intervals were used to compare the various experimental conditions. RESULTS: None of the metal ions elevated the IL-1 beta or TNF-alpha levels after 24 h, but Ni ions significantly elevated the IL-1 beta and TNF-alpha levels after 72 h. With LPS added, Ag, Cu, and Ni significantly amplified the LPS-induced production of IL-1 beta but only Ni amplified the TNF-alpha response. These alterations in cytokine response occurred with metal ion concentrations which have been previously shown to be released from dental alloys in vitro and in vivo. SIGNIFICANCE: It appeared plausible that macrophage-cytokine mediated inflammatory responses may be altered by the presence of some metal ions in tissues, particularly Ni.  相似文献   

4.
5.
In this work, we studied the expression of type II nitric oxide synthase (NOS) in primary cultures of human astrocytes and microglia. Cytokine-activated human fetal astrocytes expressed a 4.5-kb type II NOS mRNA that was first evident at 8 h, steadily increased through 48 h, and persisted through 72 h. The inducing signals for astrocyte NOS II mRNA expression were in the order IL-1beta + IFN-gamma > IL-1beta + TNF-alpha > IL-1beta. SDS-PAGE analysis of cytokine-stimulated astrocyte cultures revealed an approximately 130-kDa single NOS II band that was expressed strongly at 48 and 72 h (72 h > 48 h). Specific NOS II immunoreactivity was detected in cytokine-treated astrocytes, both in the cytosol and in a discrete paranuclear region, which corresponded to Golgi-like membranes on immunoelectron microscopy. In human microglia, cytokines and LPS failed to induce NOS II expression, while the same stimuli readily induced TNF-alpha expression. In cytokine-treated human astrocytes, neither NOS II mRNA/protein expression nor nitrite production was inhibited by TGF-beta, IL-4, or IL-10. In contrast, IL-1 receptor antagonist exerted near complete inhibition of NOS II mRNA and nitrite induction. Monocyte chemoattractant peptide-1 mRNA was induced in TGF-beta-treated astrocytes, demonstrating the presence of receptors for TGF-beta in astrocytes. These results confirm that in humans, cytokines stimulate astrocytes, but not microglia, to express NOS II belonging to the high output nitric oxide system similar to that found in rodent macrophages. They also show that the regulation of type II NOS expression in human glia differs significantly from that in rodent glia. A crucial role for the IL-1 pathway in the regulation of human astrocyte NOS II is shown, suggesting a potential role for IL-1 as a regulator of astrocyte activation in vivo.  相似文献   

6.
7.
Macrophages are present in inflammatory tissue sites where abnormal degradation of the extracellular matrix takes place. To evaluate the potential of macrophages to participate in such matrix destruction, we studied the effects of three cytokines present in inflammatory tissue sites, TNF-alpha, IL-1beta, and IFN-gamma, on the production of three matrix-degrading metalloproteinases, interstitial collagenase, stromelysin, and 92-kDa gelatinase, as well as their natural inhibitor, TIMP-1 (tissue inhibitor of metalloproteinases number 1), by human monocyte-derived macrophages differentiated in vitro. Spontaneous production of interstitial collagenase and stromelysin by these cells was minimal, and was not influenced by the cytokines. In contrast, the cells secreted substantial basal amounts of 92-kDa gelatinase, the secretion of which was stimulated (2- to 15-fold; on average 5-fold) by both TNF-alpha and IL-1beta, while the production of TIMP-1 was unaffected. IFN-gamma suppressed the production of the 92-kDa gelatinase induced by TNF-alpha- and IL-1beta. TNF-alpha and IL-1beta regulated the expression of 92-kDa gelatinase by monocyte-derived macrophages at the pretranslational level. The results show that expression of 92-kDa gelatinase, but not its natural inhibitor TIMP-1, by human tissue-type macrophages is selectively up-regulated by proinflammatory cytokines; which suggests that these cells, when actually present in an inflammatory environment, will actively participate in the destruction of the extracellular matrix.  相似文献   

8.
Idiopathic pulmonary fibrosis (IPF) and asbestosis are fibrotic interstitial lung diseases characterized by alveolar wall fibrosis with accumulation of extracellular matrix, interstitial remodeling, and increased numbers of activated alveolar macrophages. Animal models and in vitro studies have shown that macrophage cytokines, namely IL-1 beta and TNF-alpha, play significant roles in the development of fibrosis. We found significant increases for TNF-alpha release in both diseases (p < 0.01) and a significant increase for IL-1 beta release in asbestosis compared to normal controls (p < 0.01). Also, the mRNA expression of these cytokines was increased in alveolar macrophages from patients with IPF or asbestosis compared with normals. The level of TNF-alpha release in macrophage supernatants correlated with the number of neutrophils per milliliter bronchoalveolar lavage fluid returned. Chrysotile, crocidolite, amosite asbestos, and silica stimulated IL-1 beta and TNF-alpha release and up-regulated their respective mRNA in macrophages or monocytes. To evaluate the role of IL-1 beta and TNF-alpha in the accumulation of extracellular matrix, we studied collagen types I and III and fibronectin gene expression in human diploid lung fibroblasts after short term (2 h) serum-free exposure to recombinant cytokines. Both cytokines up-regulated these genes 1.5- to 3.6-fold. These cytokines have the potential to influence the remodeling and fibrosis observed in the lower respiratory tract in IPF and asbestosis.  相似文献   

9.
Human skin equivalents (HSEs) were used as a model to investigate interleukin (IL)-1 alpha and IL-1 beta secretions by keratinocytes stimulated by Sarcoptes scabiei (SS). SS mites burrowed into the stratum corneum when placed on the surface of cultured HSEs. Mites lived for 14 days. Mites and mite products induced cells in the HSEs to secrete IL-1 alpha and IL-1 beta within 16 hr. Scabies mites induced production of greater amounts of IL-1 alpha than IL-1 beta. Hepatocyte growth factor in the culture medium at 3 and 30 ng/ml upregulated the secretions of both IL-1 alpha and IL-1 beta by mite-infested skin equivalents, whereas 10 ng/ml of IL-6 upregulated production of only IL-1 beta. Therefore, these cytokines were important immunomodulating factors influencing keratinocyte secretion of IL-1 alpha and IL-1 beta in vitro. The results of this study provide the first evidence that keratinocytes (possibly fibroblasts) in the skin produce these cytokines in response to scabies mites or other ectoparasitic arthropods. Because IL-1 alpha and IL-1 beta are potent inducers of inflammation and keratinocytes are among the first effector cells to encounter scabies mites and their products, these cells may be key initiators of the inflammatory/immune reaction to scabies.  相似文献   

10.
11.
A newly synthesized demethylpodophyllotoxin derivative, 4-O-butanoyl-4'-demethylpodophyllotoxin (BDPT) or BN58705, has recently been shown to exert a potent cytotoxic activity in vitro against a variety of drug-resistant human tumor cell lines. The effect of this agent on effector cells of the immune system, however, has not been examined. The present study investigated the effect of BDPT on the response of activated human peripheral blood derived monocytes (PBM) to secrete cytokines. Activation of PBM overnight with LPS, IFN-gamma, or PMA resulted in secretion into the supernatant of TNF-alpha, IL-1 beta, IL-6, and IL-8 as assessed by ELISA. The addition of BDPT to the stimulated cultures resulted in significant inhibition of TNF-alpha and IL-1 beta secretion, whereas the secretion of IL-6 and IL-8 was not affected. The selective inhibition of TNF-alpha and IL-1 beta secretion by BDPT-treated PBM was observed with all three stimuli tested. The inhibitory effect mediated by BDPT was concentration dependent and was optimal at 6-20 microM. Time kinetic analysis indicated that the inhibition of secretion was rapid and detected as soon as 2 hr following stimulation of the PBM and lasted for as long as 24 hr. A comparison was made between BDPT and pentoxyfilline, a xanthine-derived phosphodisterase inhibitor that was reported to inhibit TNF-alpha and IL-1 beta secretion by PBM. Both BDPT and PTX showed similar time kinetics and patterns of inhibition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
OBJECTIVE: To test the hypothesis that interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha) regulate granulocyte colony-stimulating factor (G-CSF) production by human placental villous core mesenchymal cells. METHODS: Villous core mesenchymal cells were isolated from placentas at 14-20 weeks' gestation and cultured in vitro. Cells were treated with IL-1 beta or TNF-alpha in dose-response and time-course studies. We measured G-CSF mRNA expression by Northern blot analysis and G-CSF protein production by enzyme-linked immunosorbent assay of the conditioned media. RESULTS: Unstimulated mesenchymal cells expressed negligible G-CSF. Steady-state G-CSF mRNA expression was maximal 3-6 hours after IL-1 beta treatment and 6-18 hours after TNF-alpha treatment. Each cytokine induced G-CSF protein production in dose-and time-dependent manners, with IL-1 beta more potent than TNF-alpha. The G-CSF mRNA expression and G-CSF protein production induced by the combination of both cytokines exceeded that induced by either cytokine alone. CONCLUSIONS: Interleukin-1 beta and TNF-alpha stimulate G-CSF production by placental villous core mesenchymal cells in vitro. These results identify a potential mechanism by which villous core mesenchymal cells mediate, in part, the placental response to these two cytokines.  相似文献   

13.
14.
Stimulation of human monocytes with LPS induces expression of multiple cytokines, including TNF-alpha, IL-1 beta, IL-6, and IL-10, IL-10 expression is delayed relative to that of TNF-alpha, IL-1 beta, and IL-6. Furthermore, IL-10 feedback inhibits expression of TNF-alpha, IL-1 beta, and IL-6, thus providing an efficient autocrine mechanism for controlling proinflammatory cytokine production in monocytes. The Th1-type lymphokine, IFN-gamma, markedly up-regulates TNF-alpha production in monocytes. However, the precise mechanism by which IFN-gamma mediates this effect is unknown. We examined the effects of IFN-gamma on IL-10 expression in LPS-stimulated monocytes, and the relationship between IL-10 and TNF-alpha production in these cells. LPS stimulation induced rapid, ordered expression of multiple cytokines. Steady-state mRNA levels for TNF-alpha increased rapidly, reached maximal levels by 2 to 3 h poststimulation, and then declined sharply. IL-1 beta and IL-6 mRNA levels also increased markedly following stimulation with LPS, but decreased more slowly than did TNF-alpha. Down-regulation of mRNA for TNF-alpha, IL-1 beta, and IL-6 coincided with a delayed and more gradual increase in IL-10 mRNA levels. Furthermore, neutralization of IL-10 with anti-IL-10 Abs prolonged TNF-alpha mRNA expression, and significantly increased net TNF-alpha production. IFN-gamma suppressed expression of IL-10 mRNA and protein in a dose-dependent manner. Moreover, inhibition of IL-10 production correlated with a marked increase in both the magnitude and duration of TNF-alpha expression. Thus, potentiation of TNF-alpha production by IFN-gamma in monocytes is coupled to inhibition of endogenous IL-10 expression.  相似文献   

15.
BACKGROUND: Increasing evidence points to a important role for inflammatory cytokines for the pathogenesis of Crohn's disease. AIM: To compare the secretion rate of tumour necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1 beta) and interleukin-6 (IL-6) by morphologically normal and inflamed intestinal mucosa from patients with Crohn's disease. RESULTS: Organ cultures of intestinal biopsy specimens taken from areas of affected mucosa from patients with Crohn's disease spontaneously produced increased amounts of TNF-alpha, IL-1 beta, and IL-6 compared with controls but also biopsy specimens taken in macroscopically and microscopically unaffected areas in the same patients. Concentrations of IL-1 beta and IL-6 measured in the supernatant fluid of biopsy cultures were positively correlated with the degree of tissue involvement measured by both endoscopic and histological grading. By contrast, TNF-alpha concentrations were not correlated to endoscopic and histological grading. CONCLUSIONS: These consistently raised TNF-alpha, IL-1 beta and IL-6 secretions by normal appearing mucosa from patients with Crohn's disease provide evidence for a sustained immune stimulation in Crohn's disease even in the absence of patent inflammation. The results shed a new light on the role of inflammatory cytokines in the onset of intestinal tissue damage in Crohn's disease and suggest that the range of intestinal lesions in Crohn's disease may be wider than suspected on the basis of regular endoscopic and histological examinations.  相似文献   

16.
17.
18.
Exposure of monocytes to pro-inflammatory cytokines or lipopolysaccharide (LPS) may induce synthesis and expression of tissue factor (TF). In this paper we have focused on the induction of TF-activity in human monocytes by the pro-inflammatory cytokines recombinant human interleukin 1 (rhIL-1 alpha) (rhIL-1 beta) (rhIL-6) and human tumour necrosis factor alpha (rhTNF-alpha), measured as procoagulant activity (PCA) in a microtitre plate-based clot assay. In addition we have studied the modulation of IL-1 alpha/beta induced TF-mRNA and PCA by rhIL-4, rhIL-10 and rhIL13. IL-1 alpha and IL-1 beta induced a concentration dependent increase in TF-activity. Neither IL-6 nor TNF-alpha gave rise to procoagulant activity at the concentrations tested (0.2-20 ng/ml). IL-4, IL-10 and IL-13, all effectively diminished IL-1 alpha/beta induced PCA, shown at the protein- and at the mRNA-level, while cell viability was unaffected. These results add to the previously demonstrated role of IL-4 and IL-10 as inhibitors of LPS-induced TF-activity, showing that these anti-inflammatory cytokines are not specific for LPS-activation but interfere with other stimulating substances such as IL-1, which may be involved in diseases where LPS is not present.  相似文献   

19.
Male, Long Evans rats (350-450 g) were anaesthetized and had pulsed Doppler probes and intravascular catheters implanted to allow monitoring of regional (renal, mesenteric and hindquarters) haemodynamics in the conscious state. Our main objectives were to:- assess the effects of administering human recombinant tumour necrosis factor (TNF)-alpha and human recombinant interleukin-1 (IL-1)beta, alone and together; determine the influence of pretreatment with a mixture of antibodies to TNF-alpha and IL-1beta on responses to co-administration of the cytokines; ascertain if pretreatment with a mixture of the antibodies to TNF-alpha and IL-1beta had any influence on the responses to lipopolysaccharide (LPS). TNF-alpha (10, 100 and 250 microg kg(-1), in separate groups, n=3, 9 and 8, respectively) caused tachycardia (maximum delta, +101+/-9 beats min(-1)) and modest hypotension (maximum delta, -10+/-2 mmHg), accompanied by variable changes in renal and mesenteric vascular conductance, but clear increases in hindquarters vascular conductance; only the latter were dose-related (maximum delta, +6+/-6, +27+/-9, and +61+/-12% at 10, 100 and 250 microg kg(-1), respectively). IL-1beta (1, 10, and 100 microg kg(-1) in separate groups, n = 8, 8 and 9, respectively) evoked changes similar to those of TNF-alpha (maximum delta heart rate, +69+/-15 beats min(-1); maximum delta mean blood pressure, -14+/-2 mmHg; maximum delta hindquarters vascular conductance, +49+/-17%), but with no clear dose-dependency. TNF-alpha (250 microg kg(-1)) and IL-1beta (10 microg kg(-1)) together caused tachycardia (maximum delta, +76+/-15 beats min(-1)) and hypotension (maximum A, -24+/-2 mmHg) accompanied by increases in renal, mesenteric and hindquarters vascular conductances (+52+/-6%, +23+/-8%, and +52+/-11%, respectively). Thereafter, blood pressure recovered, in association with marked reductions in mesenteric and hindquarters vascular conductances (maximum delta, -50+/-3% and -58+/-3%, respectively). Although bolus injection of LPS (3.5 mg kg(-1)) caused an initial hypotension (maximum delta, -27+/-11 mmHg) similar to that seen with co-administration of the cytokines, it did not cause mesenteric or hindquarters vasodilatation, and there was only a slow onset renal vasodilatation. The recovery in blood pressure following LPS was less than after the cytokines, and in the former condition there was no mesenteric vasoconstriction. By 24 h after co-administration of TNF-alpha and IL-1beta or after bolus injection of LPS, the secondary reduction in blood pressure was similar (-16+/-2 and -13+/-3 mmHg, respectively), but in the former group the tachycardia (+117+/-14 beats min(-1)) and increase in hindquarters vascular conductance (+99+/-21%) were greater than after bolus injection of LPS (+54+/-16 beats min ' and +439%, respectively). Pretreatment with antibodies to TNF-alpha and IL-1beta (300 mg kg(-1)) blocked the initial hypotensive and mesenteric and hindquarters vasodilator responses to co-administration of the cytokines subsequently. However, tachycardia and renal vasodilatation were still apparent. Premixing antibodies and cytokines before administration prevented most of the effects of the latter, but tachycardia was still present at 24 h. Pretreatment with antibodies to TNF-alpha and IL-1beta before infusion of LPS (150 microg kg(-1) h(-1) for 24 h) did not affect the initial fall in blood pressure, but suppressed the hindquarters vasodilatation and caused a slight improvement in the recovery of blood pressure. However, pretreatment with the antibodies had no effect on the subsequent cardiovascular sequelae of LPS infusion. the results indicate that although co-administration of TNF-alpha and IL-1beta can evoke cardiovascular responses which, in some respects, mimic those of LPS, and although antibodies to the cytokines can suppress most of the cardiovascular effects of the cytokines, the antibodies have little influence on the haemodynamic responses to LPS, possibly because, during infusion of LPS, the sites of production and local action of endogenous cytokines, are not accessible to exogenous antibodies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号