首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present research, microstructure and mechanical properties of 2205 duplex stainless steel/A517 quench and tempered low alloy steel dissimilar joint were investigated. For this purpose, gas tungsten arc welding was used with ER2209 filler metal. Characterizations were conducted by optical microscopy, scanning electron microscopy equipped with an energy dispersive spectroscopy and X-ray diffraction. Mechanical properties were evaluated in micro-hardness, tensile and impact tests. Microstructure in the weld zone included an austenitic continuous network in the matrix of primary ferrite. No brittle phases were formed in the weld metal and stainless steel heat affected zone (HAZ). The weld metal/A517 interface showed higher hardness than other regions. Tensile tests indicated that the values of the yield and tensile strength were 663 and 796 MPa, respectively. Impact tests indicated that the weld zone had almost the same impact energy as base metals. The minimum impact energy of 12 J was related to A517 HAZ. The results of scanning electron microscopy for fracture surfaces indicated that weld zone, 2205 HAZ and A517 HAZ had ductile, ductile–brittle and brittle fracture mode, respectively.  相似文献   

2.
Aiming at the security problems of pipeline steel application, the different positions of the welded joints of circumferentially welding pipeline of X80 steel were investigated by microstructure observation, the hardness, Charpy impact toughness and crack tip opening displacement (CTOD) test at low temperature. The Vickers hardness test results show that there are local softened regions in heat-affected zone (HAZ). Charpy impact test indicate that the ductile–brittle transition temperature of weld is below ??60 °C, the ductile–brittle transition temperature of HAZ is around ??38 °C. CTOD test reveal that the fracture toughness of HAZ shows a large fluctuation since it is in the ductile–brittle transition temperature regime.  相似文献   

3.
The present study has been carried out to investigate the coarse-grained heat-affected zone (CGHAZ) microstructure and crack tip opening displacement (CTOD) toughness of grade StE 355 Ti-microalloyed offshore steels. Three parent plates (40-mm thick) were studied, two of which had Ti microalloying with either Nb + V or Nb also present. As a third steel, conventional StE 355 steel without Ti addition was welded for comparison purposes. Multipass tandem submerged arc weld (SAW) and manual metal arc weld (SMAW) welds were produced. Different heat-affected zone (HAZ) microstructures were simulated to ascertain the detrimental effect of welding on toughness. All HAZ microstructures were examined using optical and electron microscopy. It can be concluded that Ti addition with appropriate steel processing, which disperses fine TiN precipitates uniformly, with a fine balance of other microalloying elements and with a Ti/N weight ratio of about 2.2, is beneficial for HAZ properties of StE 355 grade steel.  相似文献   

4.
The microstructure in the heat-affected zone (HAZ) of multipass welds typical of those used in power plants and made from 9 wt pct chromium martensitic Grade 92 steel is complex. Therefore, there is a need for systematic microstructural investigations to define the different regions of the microstructure across the HAZ of Grade 92 steel welds manufactured using the traditional arc welding processes in order to understand possible failure mechanisms after long-term service. In this study, the microstructure in the HAZ of an as-fabricated two-pass bead-on-plate weld on a parent metal of Grade 92 steel has been systematically investigated and compared to a complex, multipass thick section weldment using an extensive range of electron and ion-microscopy-based techniques. A dilatometer has been used to apply controlled thermal cycles to simulate the microstructures in distinctly different regions in a multipass HAZ using sequential thermal cycles. A wide range of microstructural properties in the simulated materials were characterized and compared with the experimental observations from the weld HAZ. It has been found that the microstructure in the HAZ can be categorized by a combination of sequential thermal cycles experienced by the different zones within the complex weld metal, using the terminology developed for these regions based on a simpler, single-pass bead-on-plate weld, categorized as complete transformation, partial transformation, and overtempered.  相似文献   

5.
A model of direct-drive friction welding has been developed, which can be used to predict the time-temperature histories, the resultant microstructure, and the microhardness distribution across the weld interface of direct-drive friction-welded AISI/SAE 1045 steel bars. Experimentally measured power and axial displacement data were used in conjunction with a finite-element transient thermal model to predict the time-temperature history within the heat-affected zone (HAZ) of the weld. This was then used with a microstructure evolution model to predict the volume fraction of the subsequent microconstituents and the microhardness distribution across the weld interface of welds produced using three significantly different welding conditions: one with optimal conditions, one with a long burn-off time, and one with high axial pressure and rotational speed but short burn-off time. There was generally good agreement between the predicted and the measured time-temperature histories, volume fraction of the resultant microstructures, and microhardness distribution in the HAZ of AISI/SAE 1045 steel friction welds produced using these three significantly different welding conditions.  相似文献   

6.
This study was carried out to investigate the evaluation of dissimilar welding between Incoloy 825 Ni-based alloy and SAF 2507 super duplex stainless steel. Welding was conducted by pulsed current (PC) and continuous current (CC) gas tungsten arc welding (GTAW) methods using ERNiCrMo-3 filler wire. The microstructure of weld zones and base metal/weld interfaces as well as mechanical properties of weldments were characterized. The results detailed the formation of Nb, and Mo-rich phases in the inter-dendritic regions of weld metals leading to a decrease in impact resistance of weld zones in comparison to parent metals. Presence of more secondary phases at the CCGTA weld metal resulted in higher hardness and lower toughness than that of the PCGTAW sample. During tensile tests, fracture occurred at the Incoloy 825 base metal, and both weldments also underwent ductile mode of fracture. The research addressed the microstructure–property relationship for dissimilar weld joints.  相似文献   

7.
Ferritic steels are often used in thick-plate form. The feasibility of electron-beam welding such thick plates and the mechanical properties of these welds were examined in a recent study. In this investigation, the microstructures of these thick-plate, electron-beam welds were evaluated. The study was carried out on a 3Cr-1.5Mo-0.1V steel. Weld simulations were used to aid in the study of the heat-affected zone (HAZ) microstructure. Such simulations allowed for a more reliable and detailed evaluation of the variation in microstructure with distance from the fusion line. The structures were related to microhardness measurements made across the width of the weld and the HAZ. The fusion zone and the immediately adjacent HAZ consisted of bainite platelets with narrow films of retained austenite at many of the bainite platelet boundaries. Farther away from the fusion zone, the structure was a two-phase mixture of bainitic platelets and ferrite produced by heating base metal between theAc 1 and theAc 3 temperatures. Still farther from the weld, the structure consisted of tempered bainite, with the degree of tempering decreasing with distance from the fusion line. The bainite plus ferrite region and the tempered bainite section are associated with a soft zone in the hardness profile across the weld. A postweld heat treatment (PWHT) was found to reduce the hardnesses of the fusion zone, HAZ, and base material to relatively uniform levels. The structure across the weld and HAZ after a PWHT is tempered bainite except in one section of the HAZ in which tempered bainite and ferrite coexist.  相似文献   

8.
为满足490—590MPa级厚钢板使用中对焊接大线能量化、高强度厚板化、高韧性化的要求.开发出新的超越了已有技术界限的热影响区细晶高韧性化技术.从而可以得到韧性良好的热影响区。该技术旨在明显抑制熔合线附近热影响区内奥氏体晶粒长大,使高温热稳定性优良的氧化物或硫化物在钢中微细分散。通过显著细化奥氏体晶粒来微细化热影响区组织。技术要点是确定工业方法,使含有适量镁或钙、尺寸为数十纳米至数百纳米的钢中氧化物或硫化物密而分散。该技术适用于建筑、造船、海洋工程结构和石油管线用厚钢板,在确保焊接钢结构安全可靠基础上,提高焊接热影响区的韧性。  相似文献   

9.
This paper analyzed the evolution of microstructure, composition, and impact toughness across the fusion line of high-strength bainitic steel weldments with different heat inputs. The main purpose was to develop a convenient method to evaluate the HAZ toughness quickly. The compositions of HAZ were insensitive to higher contents of alloy elements (e.g., Ni, Mo) in the weld metal because their diffusion distance is very short into the HAZ. The weld metal contained predominantly acicular ferrite at any a heat input, whereas the main microstructures in the HAZ changed from lath martensite/bainite to upper bainite with the increasing heat input. The evolution of HAZ toughness in relation to microstructural changes can be revealed clearly combined with the impact load curve and fracture morphology, although the results of impact tests do not show an obvious change with heat input because the position of Charpy V notch contains the weld metal, HAZ as well as a part of base metal. As a result, based on the bead-on-plate welding tests, the welding parameter affecting the HAZ toughness can be evaluated rapidly.  相似文献   

10.
王毓男  蒋晓放 《钢铁》2019,54(8):209-215
 海洋工程领域对可大线能量焊接且低温韧性优良的厚钢板需求迫切。宝钢通过微合金化技术及调质工艺,开发出了满足大线能量焊接的E550级海洋工程用钢。通过冶炼、轧制、调质试验、焊接热模拟试验、电镜观察统计及金相观察,研究了大线能量焊接用海工钢H1夹杂物、显微组织及力学性能,并与宝钢现有海工钢E550进行了对比。研究结果表明,H1中夹杂物为Al2O3、MnS、Al2O3 Ti3O5、Al2O3 MnS、TiN MnS、Al2O3 Ti3O5 MnS;E550中夹杂物为Al2O3、CaO·xAl2O3(CAx)、CaO CaS、CAx CaS、CAx CaS TiN。H1力学性能满足E550级海工钢要求,且满足50和100 kJ/cm线能量焊接要求。其HAZ韧性改善的机理为,低硅低铝质量分数有利于减少局部脆性区;钛质量分数的降低,有利于抑制TiC脆化,提高HAZ韧性。  相似文献   

11.
The microstructure of three 12 pct cr steel weld metals with different nickel and nitrogen contents was studied in as-welded condition and after postweld heat treatment with and without intercooling. Tensile strength and impact toughness of the weld metals were investigated in different postweld heat treatment conditions. In weld metals heat treated without intercooling, austenite decomposed by a eutectoid reaction that resulted in M23C6 aggregates around retained δ-ferrite. Two morphologies of M2N and MN precipitates were found in a low-dislocation α-ferrite. It was concluded that these phases were also transformed from austenite. In weld metals heat treated with intercooling, M23C6 precipitates were smaller and more homogeneously distributed. Different MN precipitates were found in the tempered martensite. The fracture mode of the weld metals at room temperature was mainly transgranular cleavage with some fibrous fracture. Intercooling treatment improved Charpy impact toughness of the 12 pct Cr steel weld metals substantially. It was found that the important microstructural factors affecting the impact toughness of the weld metals which were heat treated without intercooling were the sizes of the α-ferrite grains, nonmetallic inclusions, and M23C6 aggregates. For the weld metals heat treated with intercooling, the factors which affect the toughness of the weld metals were the sizes of martensite packets and nonmetallic inclusions.  相似文献   

12.
To research the effect of Zr addition on inhibiting austenite grain growth of Ti-bearing low carbon steels,two steels with different Zr contents were prepared using a laboratory vacuum induction furnace. The performance of HAZ under weld thermal simulations was investigated. The impact toughness,microstructure and the second-phase particle performance of HAZ under weld thermal simulations were investigated. The HAZ toughness was improved from 13 J to 87 J by addition of 0. 010 % Zr into the steel,with the fracture mechanism changing from cleavage fracture to toughness fracture,which was mainly attributed to the second-phase particles that were potent to nucleate acicular ferrite in HAZ during welding. It was concluded that the second-phase particles TiO x + MnS,ZrO 2 + MnS or TiO x + ZrO 2 + MnS were nucleated on ZrO 2 or TiO x ( x =1. 5,2) . This method can be applied to grain refinement by promoting the acicular ferrite formation and growth during large-scale welding,as in the cases of thick steel plates requiring higher heat inputs during welding.  相似文献   

13.
Steeliswidelyusedbecauseofitsgoodcompre hensive properties ,plentyofresourceandlowerprice .Thestrengthandtoughnessaretwoimpor tantpropertiesofsteels ,andpeoplemakeeffortstoincreasetheirvalues .Addingalloyingelementandcontrollingmicrostructurearetwobasicwaystoac complishtheaim .Therefinedmicrostructureob tainedbyprocessingtechniqueenablesthestrengthandtoughnessofsteeltobeincreasedwithoutaddingalloyingelementandtheratioofperformance costtobeincreased .Theultra finegrainedsteelshavefer ritegrains…  相似文献   

14.
A large fraction of reheated weld metal is formed during multi-pass welding, which significantly affects the mechanical properties (especially toughness) of welded structures. In this study, the low-temperature toughness of the simulated reheated zone in multi-pass weld metal was evaluated and compared to that of the as-deposited zone using microstructural analyses. Two kinds of high-strength steel welds with different hardenabilities were produced by single-pass, bead-in-groove welding, and both welds were thermally cycled to peak temperatures above Ac3 using a Gleeble simulator. When the weld metals were reheated, their toughness deteriorated in response to the increase in the fraction of detrimental microstructural components, i.e., grain boundary ferrite and coalesced bainite in the weld metals with low and high hardenabilities, respectively. In addition, toughness deterioration occurred in conjunction with an increase in the effective grain size, which was attributed to the decrease in nucleation probability of acicular ferrite; the main cause for this decrease changed depending on the hardenability of the weld metal.  相似文献   

15.
Elevated-temperature fracture toughness properties were developed on ex-service 2-l/4Cr-1Mo steel weldments. Fracture toughness was measured on both base and heat-affected zone (HAZ) metals. A composite specimen consisting of base, HAZ, and weld metals was used to develop fracture toughness properties in the HAZ area. It was observed that the J-R curve of the HAZ was significantly lower than that of the base metal. Increasing crack extension increased the difference between theJ-R curves of the base metal and the HAZ. Dimpled fracture was the prime fracture mode in the base metal specimen, and a mixed-mode (ductile and “granular”) fracture was found in the HAZ specimens. Scanning transmission electron microscopy (STEM) examination revealed significant intergranular carbide precipitation and agglomeration within the HAZ. The lower fracture toughness of the HAZ, as compared to the base metal, was attributed to the large accumulation of carbides in the grain boundaries of the HAZ, which weakened the grain boundaries and caused “granular” fracture.  相似文献   

16.
 采用CO2焊接方法焊接X100管线钢,分析了不同焊接工艺下焊接接头组织和性能的变化特征。随着焊接热输入的增加,焊接接头的屈服强度和抗拉强度降低,焊缝和热影响区处的冲击吸收功呈现先增大后减小的变化趋势,而焊缝组织均以针状铁素体(AF)为主。焊接热输入为1.17 kJ/mm时,粗晶区的显微组织主要是贝氏体铁素体(BF),强韧匹配性最为优异;当热输入增加至1.91 kJ/mm时,粗晶区的组织除了BF外,还出现了粒状贝氏体(GB),强韧水平明显降低。综合考虑,可将1.17 kJ/mm作为X100管线钢CO2焊接时的最佳热输入。  相似文献   

17.
Three low carbon structural steels of different plate thickness have been investigated for hydrogen assisted cold cracking by the IRC weldability test at different restraint intensities. At diffusible hydrogen levels of 10–15 N ml/100 g Fe (ISO 3690), cracking decreases at increasing heat inputs due to a drop in restraint stress and hardness as well as an increase in hydrogen diffusion times. Critical heat inputs for crack prevention range from 0.95 to 1.4 kJmm?1. Higher restraints enforce higher cracking stresses as well as final stresses of uncracked test welds. Higher restraints and lower heat inputs also induce faster stress increase during cooling which, for the steels containing Ni and Cu, shift the location of cracking from the HAZ to the weld metal. The steel without Ni and lower maximum HAZ hardness reveals weld metal cracking only, regardless of welding conditions. It can be concluded that for weld metal cracking, the relation between stress increase- and hydrogen effusion rates but also the relation between weld metal and HAZ microstructure and mechanical properties are responsible.  相似文献   

18.
李敏 《山东冶金》2013,(5):32-34
按照EN 10225-2009附录E标准要求,采用50 kJ/cm大热输入埋弧焊工艺焊接厚为100 mm海洋平台用EH36钢板,测试分析了焊态及焊后热处理态焊接接头的组织与性能。结果表明,无论焊态还是焊后热处理态,EH36厚钢板焊接接头的硬度HV10≤280,抗拉强度≥510 MPa,-40℃冲击功均值≥50 J,表面组织以粗大的板条状贝氏体+少量粒状贝氏体为主,心部组织以细小的铁素体+珠光体为主,表明济钢开发的EH36厚钢板满足海洋平台的焊接生产要求。焊接接头表面与心部熔合线形状及传热状态的差异,是导致表面HAZ晶粒比心部粗大、因而表面韧性低于心部的主要原因。  相似文献   

19.
焊接区的微观组织是决定其力学性能的关键因素。为了改善低合金钢焊缝的冲击韧性,对500~1 000MPa级焊条的焊缝金属的化学组成、金相组织和力学性能进行了对比研究。采用金相显微镜和透射电子显微镜对不同强度级别的低合金钢焊缝组织进行了观察和电子衍射分析,并进行了焊缝金属拉伸强度和冲击韧性测试。结果表明,随着焊条强度级别的增加,焊缝组织由先共析铁素体、针状铁素体加珠光体变成粒状贝氏体,最后变成贝氏体加马氏体组织;当焊缝组织为粒状贝氏体时其韧性最低。  相似文献   

20.
赵瑾玥  郭永环  闫勃 《钢铁》2021,56(11):135-140
 双相钢中铁素体马氏体两相性能差异会导致焊接接头软化,在使用过程中温度较低时,冲击功下降,使材料由韧性状态变为脆性状态。为研究铈和铌添加量对改善DP780焊缝低温脆性的问题,利用低温冲击试验与拉伸试验,开展了不同铈和铌添加量对DP780焊缝的力学性能的研究。利用金相显微镜、SEM等方法阐明了试验钢在添加不同铈和铌后的焊缝组织与形貌变化。结果表明,在-40 ℃时,无铈和铌添加时组织中出现部分残余奥氏体,焊缝冲击功为0.465 J,解理台阶面出现大量河流花样,属于脆性断裂;随铈与铌质量分数变化,焊缝冲击功与铈和铌的添加量呈现非线性关系。当铈与铌占熔敷金属质量分数分别为0.35%和0.15%时焊缝的综合性能最佳,冲击功达到3.9 J,熔敷金属组织晶界紧密,撕裂棱周围出现韧窝,呈混合断裂特征。试验研究表明,加入的适量的铈与铌,焊缝中形成的稀土化合物可增加断裂变形阻力与消耗能量,从而有效阻碍裂纹的扩展,显著提高DP780的低温冲击韧性而不会大幅降低其抗拉强度,保证双相钢焊接质量。但铈与铌影响焊缝性能无固定函数关系可循且试验样本量少,无法精确到任意添加量探究。在后续研究中可引入算法对DP780焊缝力学性能进行预测,在生产之前建立模型,寻找最佳铈和铌添加量,提高安全性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号