首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to characterize the interaction between nitric oxide (NO)- and cAMP-related pathways in the control of renal blood flow. Using the isolated perfused rat kidney model, we determined the effects of inhibition of NO formation by Nomega-nitro-L-arginine methyl ester (L-NAME; 1 mmol/L) and of NO administration by sodium nitroprusside (SNP, 10 micromol/L) on renal vascular resistance under conditions of elevated vascular cAMP levels. cAMP levels were increased either by adenylate cyclase activation via isoproterenol or by inhibition of cAMP phosphodiesterases (PDEs) 1, 3, and 4. We found that L-NAME markedly increased vascular resistance and that this effect was completely reversed by SNP. Both isoproterenol and inhibitors of the cAMP PDEs lowered basal vascular resistance. In the presence of isoproterenol (3 nmol/L) and inhibitors of PDE-1 [8-methoxymethyl-l-methyl-3-(2-methylpropyl)-xanthine; 8-MM-IBMX, 20 micromol/L] and PDE-4 (rolipram, 20 micromol/L), L-NAME again substantially increased vascular resistance, and this effect of L-NAME was completely reversed by SNP. In the presence of the PDE-3 inhibitors milrinone (20 micromol/L) and trequinsin (200 nmol/L), however, both L-NAME and SNP failed to exert any additional effects. Because PDE-3 is a cGMP-inhibited cAMP PDE and because the vasodilatory effect of SNP was abrogated by the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) (20 micromol/L), our findings are compatible with the idea that an action of NO on PDE-3 could account for the vasodilatory properties of NO on the renal vasculature. Moreover, our findings suggest that PDE-3 activity is an important determinant of renal vascular resistance.  相似文献   

2.
We have previously shown that the basal acetylcholine release in the ventral striatum is under the enhancing influence of endogenous nitric oxide (NO) and that NO donors cause pronounced increases in the acetylcholine release rate. To investigate the role of cyclic GMP, glutamate, and GABA in the NO-induced acetylcholine release, we superfused the nucleus accumbens, (Nac) of the anesthetized rat with various compounds through a push-pull cannula and determined the neurotransmitter released in the perfusate. Superfusion of the Nac with the NO donors diethylamine/NO (DEANO; 100 micromol/L), S-nitroso-N-acetylpenicillamine (SNAP; 200 micromol/L), or 3-morpholinosydnonimine (SIN-1; 200 micromol/L) enhanced the acetylcholine release rate. The guanylyl cyclase inhibitor 1H-(1,2,4)-oxodiazolo(4,3-a)quinoxalin-1-one (ODQ; 10 micromol/L) abolished the effects of DEANO and SIN-1. 6-(Phenylamino)-5,8-quinolinedione (LY-83583; 100 micromol/L), which also inhibits cyclic GMP synthesis, inhibited the releasing effects of DEANO and of SNAP, whereas the effect of SIN-1 on acetylcholine release was not influenced. The DEANO-induced release of acetylcholine was also abolished in the presence of 20 micromol/L 6,6-dinitroquinoxaline-2,3-dione (DNQX) and 10 micromol/L (+/-)-2-amino-5-phosphonopentanoic acid (AP-5). Simultaneous superfusion with 50 micromol/L quinpirole and 10 micromol/L 7-bromo-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF 83566) was ineffective. Superfusion with 500 micromol/L DEANO decreased the release of acetylcholine. The inhibitory effect of 500 micromol/L DEANO was reversed to an enhanced release on superfusion with 20 micromol/L bicuculline. Bicuculline also enhanced the basal release rate. These findings indicate that cyclic GMP mediates the NO-induced release of acetylcholine by enhancing the outflow of glutamate. Dopamine is not involved in this process. Only high concentrations of NO increase the output of GABA, which in turn decreases acetylcholine release. Our results suggest that cells that are able to release glutamate, such as glutamatergic neurons, are the main target of NO in the Nac.  相似文献   

3.
It is thought that elevated levels of reactive oxygen metabolites contribute to the dysfunction of vascular endothelium in hypertension. We hypothesized that high intravascular pressure itself elicits production of superoxide, which then interferes with nitric oxide (NO)-mediated responses of arterioles. Thus, isolated arterioles (approximately 80 microm in diameter) from gracilis muscle of normotensive Wistar rats were cannulated and exposed to 140 mm Hg perfusion pressure for 30 minutes (in the absence of perfusate flow). After high intravascular pressure treatment, dilations to increases in perfusate flow (0 to 30 microL/min) were significantly reduced (from 39+/-2.2 to 19+/-2.1 microm at 30 microL/min), eliciting an increase in wall shear stress from approximately 20 to approximately 60 dyne/cm2. Nomega-nitro-L-arginine (10(-4) mol/L) did not affect, whereas indomethacin eliminated, flow-induced dilations after pressure treatment. In control, substance P (SP, 10(-9) to 5x10(-8) mol/L), sodium nitroprusside (SNP, 10(-8) to 10(-6) mol/L), and adenosine (ADO, 10(-6) to 5x10(-5) mol/L) elicited dilations (SP: 31.5+/-1.9 microm, SNP: 45.6+/-4 microm, and ADO: 37.2+/-4.1 microm, at maximum concentrations, respectively). After pressure treatment, maximum dilations to SP and SNP were significantly reduced (by 49% and 39%, respectively), whereas responses to ADO were not affected. Presence of superoxide dismutase (120 U/mL) and catalase (80 U/mL), but not catalase alone, in the perfusate solution prevented the reduction in dilation of arterioles to flow and agonists after pressure treatment by restoring NO mediation. We conclude that high intravascular pressure per se elicits the release of superoxide, which then interferes with NO, a mechanism that contributes to the elevation of wall shear stress and peripheral resistance in hypertension.  相似文献   

4.
1. Nitric oxide (NO) is known to stimulate soluble guanylyl cyclase, thereby eliciting an elevation of guanosine 3':5'-cyclic monophosphate (cyclic GMP) in target cells. Recently, a selective inhibitor of soluble guanylyl cyclase, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), has been identified and characterized in vitro. We have investigated the in vivo effects of ODQ on the glutamate receptor/NO/ cyclic GMP pathway by monitoring extracellular cyclic GMP during microdialysis of the cerebellum or the hippocampus of freely-moving adult rats. 2. Intracerebellar administration of ODQ (1-100 microM) via the microdialysis probe inhibited, in a concentration-dependent manner, the basal extracellular level of cyclic GMP. The maximal inhibition, measured after a 20 min perfusion with 100 microM ODQ, amounted to 80% and persisted unchanged as long as ODQ was perfused. When ODQ was removed from the perfusion stream after 20 min, the levels of cyclic GMP started to recover, suggesting reversibility of guanylyl cyclase inhibition by ODQ. 3. The cyclic GMP response evoked in the cerebellum by NMDA (200 microM) or by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA; 100 microM) was largely attenuated by 100 microM ODQ. The pattern of the inhibition curves suggests competition for guanylyl cyclase between ODQ and the NO generated by NMDA or AMPA receptor activation. 4. ODQ (100 microM) prevented the elevation of extracellular cyclic GMP levels provoked by intracerebellar infusion of the NO generator S-nitroso-N-acetylpenicillamine (SNAP; 1 mM). The inhibition of the SNAP effect was rapidly relieved when ODQ was removed from the perfusion fluid. However, ODQ (100 microM) was unable to affect the cyclic GMP response elicited by 5 mM SNAP, in keeping with the proposed idea that ODQ binds to the "NO receptor' in a reversible and competitive manner. 5. Infusion of ODQ (10, 100 or 300 microM) into the hippocampus of freely-moving rats diminished the basal extracellular level of cyclic GMP. The maximal inhibition amounted to 50% and was produced by 100 microM ODQ. 6. The cyclic GMP response observed when 1 mM SNAP was perfused in the hippocampus, similar in percentage terms to that seen in cerebellum, was dramatically reduced during co-infusion of 100 microM ODQ. 7. ODQ appears to act in vivo as a selective, reversible and possibly competitive inhibitor of the soluble guanylyl cyclase targeted by NO. This enzyme may generate most (about 80%) of the cyclic GMP found under basal conditions in the extracellular space of the cerebellum. In the hippocampus, about 50% of the basal cyclic GMP does not seem to originate from the ODQ-sensitive soluble guanylyl cyclase.  相似文献   

5.
1. To assess the action of nitric oxide (NO) and NO-donors on K+ current evoked either by voltage ramps or steps, patch clamp recordings were made from smooth muscle cells freshly isolated from secondary and tertiary branches of the rat mesenteric artery. 2. Inside-out patches contained channels, the open probability of which increased with [Ca2+]i. The channels had a linear slope conductance of 212+/-5 pS (n = 12) in symmetrical (140 mM) K+ solutions which reversed in direction at 4.4 mV. In addition, the channels showed K+ selectivity, in that the reversal potential shifted in a manner similar to that predicted by the Nernst potential for K+. Barium (1 mM) applied to the intracellular face of the channel produced a voltage-dependent block and external tetraethylammonium (TEA; at 1 mM) caused a large reduction in the unitary current amplitude. Taken together, these observations indicate that the channel most closely resembled BK(Ca). 3. In five out of six inside-out patches, NO (45 or 67 microM) produced an increase in BK(Ca) activity. In inside-out patches, BK(Ca) activity was also enhanced in some patches with 100 or 200 microM 3-morpholino-sydnonimine (SIN-1) (4/11) and 100 microM sodium nitroprusside (SNP) (3/8). The variability in channel opening with the NO donors may reflect variability in the release of NO from these compounds. 4. In inside-out patches, 100 microM SIN-1 failed to increase BK(Ca) activity (in all 4 patches tested), while at a higher (500 microM) concentration SIN-1 had a direct blocking effect on the channels (n = 3). NO applied directly to inside-out patches increased (P < 0.05) BK(Ca) activity in two patches. 5. In the majority of cells (6 out of 7), application of NO (45 or 67 microM) evoked an increase in the amplitude of whole-cell currents in perforated patches. This action was not affected by the soluble guanylyl cyclase inhibitor, 1H-[1,2,4] oxadiazolo [4,3-a]quinoxalin-1-one (ODQ). An increase in whole-cell current was also evoked with either of the NO donors, SIN-1 or SNP (each at 100 microM). With SIN-1, the increase in current was blocked with the BK(Ca) channel blocker, iberiotoxin (50 nM). 6. With conventional whole-cell voltage clamp, the increase in the outward K+ current evoked with SIN-1 (50-300 microM) showed considerable variability. Either no effect was obtained (11 out of 18 cells), or in the remaining cells, an average increase in current amplitude of 38.7+/-10.2% was recorded at 40 mV. 7. In cell-attached patches, large conductance voltage-dependent K+ channels were stimulated by SIN-1 (100 microM) applied to the cell (n = 5 patches). 8. These data indicate that NO and its donors can directly stimulate BK(Ca) activity in cells isolated from the rat mesenteric artery. The ability of NO directly to open BK(Ca) channels could play an important functional role in NO-induced relaxation of the vascular smooth muscle cells in this small resistance artery.  相似文献   

6.
The effect of nitric oxide (NO) donors on high-voltage-activated Ca2+ channels in insulin-secreting RINm5F cells was investigated using the patch-clamp technique in the whole-cell configuration. Sodium nitroprusside (SNP, 2-400 microM) induced a dose-dependent reduction in Ba2+ currents with maximal inhibition of 58%. The IC50 for SNP was 45 microM. A different NO donor, (+/-)S-nitroso-N-acetylpenicillamine (SNAP, 500 microM), also produced a 50% decrease in current amplitude. When 200 microM SNP was administered together with the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidozoline-1-oxyl-3-oxide (carboxy-PTIO, 300 microM), the Ba2+ current inhibition was lowered to 7%. Administration of 500 microM 8-bromoguanosine 3':5'-cyclic monophosphate sodium salt (8-Br-cGMP) mimicked the effects of SNP, causing a comparable decrease (56%) in peak-current amplitude. When soluble guanylyl cyclase was blocked by 10 microM 1H-[1,2, 4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ), the inhibitory effect of 200 microM SNP was reduced from 39% to 15%. The SNP-induced current decrease was 36% of controls after the blockade of L-type Ca2+ channels and 30% in the presence of 2.5 microM omega-conotoxin-MVIIC. These data indicate that NO inhibits both L-type and P/Q-type Ca2+ channels in RINm5F cells, probably by an increase in the intracellular levels of cGMP. NO may then significantly influence the Ca2+-dependent release of hormones from secretory cells as well as that of neurotransmitters from nerve terminals.  相似文献   

7.
The effects of nitrosothiol depleting compounds (p-hydroxymercuribenzoate, iodacetamide and ethacrynic acid), a guanylyl cyclase inhibitor (1H[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, ODQ) and nitric oxide (NO) scavenger agents (xanthine/xanthine oxidase and 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide; carboxy-PTIO) on light-induced photorelaxation in rat thoracic aorta were investigated. Photorelaxation responses were decreased in the presence of nitrosothiol depleting compounds suggesting S-nitrosothiols as the tissue source of the NO, whereas reduction in photorelaxation by the guanylyl cyclase inhibitor and NO scavenger agents indicates involvement of both NO and cGMP in photorelaxation. In addition the sensitivity of photorelaxation to the voltage-gated potassium channel (KV) inhibitor, 4-aminopyridine, indicates that photorelaxation is mediated via a NO/cGMP-dependent, and, perhaps, direct light, activation of KV channels.  相似文献   

8.
Direct observation was made by using the patch-clamp technique with a specially designed microperfusion system to investigate the effect of acetylcholine (Ach 10(-6) mol/L) elicited endothelium-derived relaxing factor (EDRF) on the calcium-activated potassium channel (IK(Ca)) in the smooth muscle cells of mesenteric resistance vessels in Wistar rats. Activation of IK(Ca) was firstly observed by inducing the elicited EDRF or sodium nitroprusside (SNP 10(-8) mol/L) under various clamping voltages in cell-attached configuration. While the pipette solution contained KCl 126 mmol/L and the bath solution contained KCl 5.9 mmol/L, two types of conductances of calcium-activated potassium current being 76.4 +/- 2.3 pS (mean +/- S.E. n = 7) and 160.3 +/- 7.5 pS (mean +/- S.E. n = 7) were recorded during the EDRF activation, one type of conductance being 100.5 +/- 2.8 pS (mean +/- S.E. n = 6) was activated by nitric oxide (NO) which is an effective component from SNP. Differences in kinetic characteristics of these channels between EDRF and NO activation were found, particularly the probability of the channel being open in EDRF activation was obviously greater than that in NO stimulation. It has been shown that the potassium channel mechanisms involved in the EDRF and NO actions might be different.  相似文献   

9.
Ornithine decarboxylase (ODC, EC 4.1.1.17) is the enzyme responsible for the synthesis of polyamines, which are absolutely necessary for cell proliferation. In the present work, we tested the effects of 3 nitric oxide (NO) donors, namely, sodium nitroprusside (SNP), (Z)-1-(N-methyl-N-[6-(N-methylammoniohexyl)amino] diazen-1-ium-1,2-diolate (MAHMA/NO) and 1,1-diethyl-2-hydroxy-2-nitroso-hydrazine sodium (DEA/NO), on ODC activity in human-colon carcinoma cells (HT-29). SNP was the most effective inhibitor of ODC activity with a concentration of 8 micromol/L inducing 50% inhibition of basal activity. The effect of SNP was reversed by haemoglobin (Hb), but not by GSH or L-cysteine (CYS). Very little of the SNP in solution was degraded into nitrite, but the presence of cellular homogenate increased the production of nitrite. MAHMA/NO and DEA/NO were much less effective than SNP as ODC inhibitors, since the concentrations of these agents which induce 50% inhibition of basal activity were 20- to 60-fold higher than that of SNP. The effects of MAHMA/NO and DEA/NO were not reversed by haemoglobin. In solution, these latter 2 agents were totally degraded into nitrites. In conclusion, SNP on the one hand and MAHMA/NO and DEA/NO on the other appeared to release different NOx species with different efficiency on ODC activity.  相似文献   

10.
BACKGROUND: We determined whether activation of the nitric oxide/cyclic guanosine monophosphate pathway by sodium nitroprusside (SNP) protects hearts subjected to cardioplegic arrest and prolonged hypothermic storage. METHODS: Isolated rat hearts arrested with St. Thomas' II cardioplegia and stored at 3 degrees +/- 1 degree C for 8 hours were reperfused at 37 degrees C in Langendorff (10 minutes) and working (60 minutes) modes. RESULTS: During reperfusion, left ventricular work was depressed in stored hearts relative to fresh hearts. When present during arrest, storage, and both reperfusion phases, SNP (200 mumol/L) improved work to values close to those in fresh hearts. When added only during the 10-minute period of Langendorff reperfusion, SNP also improved the subsequent recovery of work. This effect was antagonized by the soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). Poststorage coronary perfusion was not increased by SNP. CONCLUSIONS: The ability of SNP to enhance recovery independent of changes in coronary perfusion and in an ODQ-sensitive manner suggests that SNP-induced protection is due to activation of the myocardial nitric oxide/cyclic guanisine monophosphate pathway. These results suggest that supplementing cardioplegic solutions with SNP, administering SNP during early reperfusion, or both may offer additional means to improve donor heart preservation.  相似文献   

11.
1. The endothelium-dependent relaxants acetylcholine (ACh; 0.03-10 microM) and A23187 (0.03-10 microM), and nitric oxide (NO), applied either as authentic NO (0.01-10 microM) or as the NO donors 3-morpholino-sydnonimine (SIN-1; 0.1-10 microM) and S-nitroso-N-acetylpenicillamine (SNAP; 0.1-10 microM), each evoked concentration-dependent relaxation in phenylephrine stimulated (1-3 microM; mean contraction and depolarization, 45.8+/-5.3 mV and 31.5+/-3.3 mN; n=10) segments of rabbit isolated carotid artery. In each case, relaxation closely correlated with repolarization of the smooth muscle membrane potential and stimulated a maximal reversal of around 95% and 98% of the phenylephrine-induced depolarization and contraction, respectively. 2. In tissues stimulated with 30 mM KCl rather than phenylephrine, smooth muscle hyperpolarization and relaxation to ACh, A23187, authentic NO and the NO donors were dissociated. Whereas the hyperpolarization was reduced by 75-80% to around a total of 10 mV, relaxation was only inhibited by 35% (n=4-7 in each case; P<0.01). The responses which persisted to ACh and A23187 in the presence of 30 mM KCl were abolished by either the NO synthase inhibitor L-NG-nitroarginine methyl ester (L-NAME; 100 microM) or the inhibitor of soluble guanylyl cyclase 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 microM; 10 min; n=4 in each case; P<0.01). 3. Exposure to ODQ significantly attenuated both repolarization and relaxation to ACh, A23187 and authentic NO, reducing the maximum changes in both membrane potential and tension to each relaxant to around 60% of control values (n=4 in each case; P<0.01). In contrast, ODQ almost completely inhibited repolarization and relaxation to SIN-1 and SNAP, reducing the maximum responses to around 8% in each case (n=3-5; P<0.01). 4. The potassium channel blockers glibenclamide (10 microM), iberiotoxin (100 nM) and apamin (50 nM), alone or in combination, had no significant effect on relaxation to ACh, A23187, authentic NO, or the NO donors SIN-1 and SNAP (n=4 in each case; P>0.05). Charybdotoxin (ChTX; 50 nM) almost abolished repolarization to ACh (n=4; P<0.01) and inhibited the maximum relaxation to ACh, A23187 and authentic NO each by 30% (n=4-8; P<0.01). Application of ODQ (10 microM; 10 min) abolished the ChTX-insensitive responses to ACh, A23187 and authentic NO (n=4 in each case; P<0.01 5. When the concentration of phenylephrine was reduced (to 0.3-0.5 microM) to ensure the level of smooth muscle contraction was the same as in the absence of potassium channel blocker, ChTX had no effect on the subsequent relaxation to SIN-1 (n=4; P>0.05). However, in the presence of tone induced by 1-3 microM phenylephrine (51.2+/-3.3 mN; n=4), ChTX significantly reduced relaxation to SIN-1 by nearly 50% (maximum relaxation 53.2+/-6.3%, n=4; P<0.01). 6. These data indicate that NO-evoked relaxation of the rabbit isolated carotid artery can be mediated by three distinct mechanisms: (a) a cyclic GMP-dependent, voltage-independent pathway, (b) cyclic GMP-mediated smooth muscle repolarization and (c) cyclic GMP-independent, ChTX-sensitive smooth muscle repolarization. Relaxation and repolarization to both authentic and endothelium-derived NO in this large conduit artery appear to be mediated by parallel cyclic GMP-dependent and -independent pathways. In contrast, relaxation to the NO-donors SIN-1 and SNAP appears to be mediated entirely via cyclic GMP-dependent mechanisms.  相似文献   

12.
1. The role of cyclic GMP in the ability of nitric oxide (NO) to decrease intracellular free calcium concentration [Ca2+]i and divalent cation influx was studied in rabbit aortic smooth muscle cells in primary culture. In cells stimulated with angiotensin II (AII, 10(-1) M), NO (10(-10) - 10(-6) M) increased cyclic GMP levels measured by radioimmunoassay and decreased [Ca2+]i and cation influx as indicated by fura-2 fluorimetry. 2. Zaprinast (10(-4) M), increased NO-stimulated levels of cyclic GMP by 3-20 fold. Although the phosphodiesterase inhibitor lowered the level of [Ca2+]i reached after administration of NO, the initial decreases in [Ca2+]i initiated by NO were not significantly different in magnitude or duration from those that occurred in the absence of zaprinast. 3. The guanylyl cyclase inhibitor, H-(1,2,4) oxadiazolo(4,3-a) quinoxallin-1-one (ODQ, 10(-5) M), blocked cyclic GMP accumulation and activation of protein kinase G, as measured by back phosphorylation of the inositol trisphosphate receptor. ODQ and Rp-8-Br-cyclic GMPS, a protein kinase G inhibitor, decreased the effects of NO, 10(-10) - 10(-8) M, but the decrease in [Ca2+]i or cation influx caused by higher concentrations of NO (10(-7) - 10(-6) M) were unaffected. Relaxation of intact rabbit aorta rings to NO (10(-7) - 10(-5) M) also persisted in the presence of ODQ without a significant increase in cyclic GMP. Rp-8-Br-cyclic GMPS blocked the decreases in cation influx caused by a cell permeable cyclic GMP analog, but ODQ and/or the protein kinase G inhibitor had no significant effect on the decrease caused by NO. 4. Although inhibitors of cyclic GMP, protein kinase G and phosphodiesterase can be shown to affect the decrease in [Ca2+]i and cation influx via protein kinase G, these studies indicate that when these mechanisms are blocked, cyclic GMP-independent mechanisms also contribute significantly to the decrease in [Ca2+]i and smooth muscle relaxation to NO.  相似文献   

13.
1. We tested the hypothesis that nitric oxide (NO) exerts a tonic inhibitory influence on cytochrome P450 (CYP450)-dependent metabolism of arachidonic acid (AA). 2. N(omega)-nitro-L-Arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase (NOS), increased mean blood pressure (MBP), from 91+/-6 to 137+/-5 mmHg, renal vascular resistance (RVR), from 9.9+/-0.6 to 27.4+/-2.5 mmHg ml(-1) min(-1), and reduced renal blood flow (RBF), from 9.8+/-0.7 to 6.5+/-0.6 ml min(-1)) and GFR from 1.2+/-0.2 to 0.6+/-0.2 ml 100 g(-1) min(-1)) accompanied by diuresis (UV, 1.7+/-0.3 to 4.3+/-0.8 microl 100 g(-1) min (-1)), and natriuresis (U(Na)V, 0.36+/-0.04 to 1.25+/-0.032 micromol 100 g(-1) min(-1)). 3. 12, 12 dibromododec-enoic acid (DBDD), an inhibitor of omega hydroxylase, blunted L-NAME-induced changes in MBP, RVR, UV and U(Na)V by 63+/-8, 70+/-5, 45+/-8 and 42+/-9%, respectively, and fully reversed the reduction in GFR by L-NAME. Clotrimazole, an inhibitor of the epoxygenase pathway of CYP450-dependent AA metabolism, was without effect. 4. BMS182874 (5-dimethylamino)-N-(3,4-dimethyl-5-isoxazolyl)-1-naphthalenesulfo namide), an endothelin (ET)A receptor antagonist, also blunted the increases in MBP and RVR and the diuresis/natriuresis elicited by L-NAME without affecting GFR. 5. Indomethacin blunted L-NAME-induced increases in RVR, UV and U(Na)V. BMS180291 (1S-(1alpha,2alpha,3alpha,4alpha)]-2-[[3-[4-[(++ +pentylamino)carbonyl]-2-oxazolyl]-7-oxabicyclo[2.2.1]hept-2-yl ]methyl]benzenepropanoic acid), an endoperoxide receptor antagonist, attenuated the pressor and renal haemodynamic but not the renal tubular effects of L-NAME. 6. In conclusion, the renal functional effects of the CYP450-derived mediator(s) expressed after inhibition of NOS with L-NAME were prevented by inhibiting either CYP450 omega hydroxylase or cyclooxygenase or by antagonizing either ET(A) or endoperoxide receptors. 20-hydroxyeicosatetraenoic acid (20-HETE) fulfils the salient properties of this mediator.  相似文献   

14.
Nitric oxide (NO) has been proposed as an intracellular signal in the thyroid. The NO effect on function and morphology of bovine thyroid follicles in culture was analyzed by using the NO donors sodium nitroprusside (SNP) and S-nitrosoglutathione (GSNO). Both NO donors induced a concentration-dependent NO release measured by the nitrite accumulation in the culture medium. The SNP (10 to 500 micromol/L) treatment for 24 hours significantly inhibited the uptake, organification and transport of iodide in a concentration-dependent manner. When SNP (50 micromol/L) was withdrawn from the culture medium after 24 hours' incubation, iodide uptake and organification were partially recovered at 24 hours and reached the control value at 48 hours, indicating a reversible effect of SNP. A possible involvement of cyanide in the SNP inhibitory effect was excluded because incubation of follicles with potassium cyanide (KCN) at concentrations estimated to be present in the medium (40 and 80 micromol/L) for 24 hours did not modify iodide uptake and organification. The GSNO (10 to 500 micromol/L) treatment for 24 hours also reduced the iodide uptake, organification and transport in a concentration-dependent manner. A significant inhibition of iodide organification was induced after incubation with 1000 micromol/L of N2, 2'-O-dibutyrylguanosine 3':5'-cyclic monophosphate ([Bu]2cGMP). Morphological evaluation by light microscopy revealed that the incubation with NPS or GSNO (500 micromol/L) produced cellular dispersion with loss of follicular cell aggregates that was evident at 96 hours exposure. Cell viability was not altered by 10-500 micromol/L SNP or GSNO (80% to 85%). We concluded that long-term NO exposure induces functional and morphological modifications compatible with a loss of differentiation in thyroid follicles. These observations further support a role of NO in the regulation of the thyroid function.  相似文献   

15.
This study aimed to characterize the cellular pathways along which nitric oxide (NO) stimulates renin secretion from the kidney. Using the isolated perfused rat kidney model we found that renin secretion stimulated 4- to 8-fold by low perfusion pressure (40 mmHg), by macula densa inhibition (100 micromol/liter of bumetanide), and by adenylate cyclase activation (3 nmol/liter of isoproterenol) was markedly attenuated by the NO synthase inhibitor nitro-L-arginine methyl ester (L-Name) (1 mM) and that the inhibition by L-Name was compensated by the NO-donor sodium nitroprusside (SNP) (10 micromol/liter). Similarly, inhibition of cAMP degradation by blockade of phosphodiesterase 1 (PDE-1) (20 micromol/liter of 8-methoxymethyl-1-methyl-3-(2-methylpropyl)xanthine) or of PDE-4 (20 micromol/liter of rolipram) caused a 3- to 4-fold stimulation of renin secretion that was attenuated by L-Name and that was even overcompensated by sodium nitroprusside. Inhibition of PDE-3 by 20 micromol/liter of milrinone or by 200 nmol/liter of trequinsin caused a 5- to 6-fold stimulation of renin secretion that was slightly enhanced by NO synthase inhibition and moderately attenuated by NO donation. Because PDE-3 is a cGMP-inhibited cAMP-PDE the role of endogenous cGMP for the effects of NO was examined by the use of the specific guanylate cyclase inhibitor 1-H-(1,2,4)oxodiazolo(4,3a)quinoxalin-1-one (20 micromol). In the presence of 1H-[1,2,4]oxodiazolo[4,3-a]quinoxalin-1-one the effect of NO on renin secretion was abolished, whereas PDE-3 inhibitors exerted their normal effects. These findings suggest that PDE-3 plays a major role for the cAMP control of renin secretion. Our findings are compatible with the idea that the stimulatory effects of endogenous and exogenous NO on renin secretion are mediated by a cGMP-induced inhibition of cAMP degradation.  相似文献   

16.
STUDY OBJECTIVE: To investigate the effect of short-term inhalation of nitric oxide (NO) on transpulmonary angiotensin II formation in patients with severe ARDS. DESIGN: Prospective, clinical study. SETTING: Anesthesiology ICU of a university hospital. PATIENTS: Ten ARDS patients who responded to inhalation of 100 ppm NO by decreasing their pulmonary vascular resistance (PVR) by at least 20 dyne x s x cm(-5) were included in the study. INTERVENTIONS AND MEASUREMENTS: In addition to standard treatment, the patients inhaled 0, 1, and 100 ppm NO in 20-min intervals. Fraction of inspired oxygen was 1.0. Hemodynamics were measured and recorded online. Mixed venous (pulmonary arterial catheter) and arterial (arterial catheter) blood samples were taken simultaneously for hormonal analyses at the end of each inhalation period. RESULTS: Pulmonary arterial pressure decreased from 33+/-2 mm Hg (0 ppm NO, mean+/-SEM) to 29+/-2 mm Hg (1 ppm NO, p<0.05), and to 27+/-2 mm Hg (100 ppm NO, p<0.05, vs 0 ppm). PVR decreased from 298+/-56 (0 ppm NO) to 243+/-45 dyne x s x cm(-5) (1 ppm NO, not significant [NS]), and to 197+/-34 dyne x s x cm(-5) (100 ppm NO, p<0.05, vs 0 ppm). Arterial oxygen pressure increased from 174+/-23 mm Hg (0 ppm NO) to 205+/-26 mm Hg (1 ppm NO, NS), and to 245+/-25 mm Hg (100 ppm NO, p <0.05, vs 0 ppm). Mean plasma angiotensin II concentrations were 85+/-20 (arterial) and 57+/-13 pg/mL (mixed venous) during 0 ppm NO and did not change during inhalation of 1 and 100 ppm NO. Mean transpulmonary plasma angiotensin II concentration gradient (=difference between arterial and mixed venous blood values) was 28+/-8 pg/mL (range, 0 to 69) during 0 ppm NO and did not change during inhalation of 1 and 100 ppm NO. Mean transpulmonary angiotensin II formation (transpulmonary angiotensin II gradient multiplied with the cardiac index) was 117+/-39 ng/min/m2 (range, 0 to 414) during 0 ppm NO and did not change during inhalation of 1 and 100 ppm NO. Mean arterial plasma cyclic guanosine monophosphate concentration was 11+/-2 pmol/mL (0 ppm NO), did not change during 1 ppm NO, and increased to 58+/-8 pmol/mL (100 ppm NO, p<0.05). Arterial plasma concentrations of aldosterone (142+/-47 pg/mL), atrial natriuretic peptide (114+/-34 pg/mL), angiotensin-converting enzyme (30+/-5 U/L), and plasma renin activity (94+/-26 ng/mL/h of angiotensin I) did not change. CONCLUSION: The decrease of PVR by short-term NO inhalation in ARDS patients was not accompanied by changes in transpulmonary angiotensin II formation. Our results do not support any relationship between transpulmonary angiotensin II formation and the decrease in PVR induced by inhaled NO.  相似文献   

17.
Nitric oxide (NO) has been implicated as a modulator of the vascular effects of angiotensin II (ANG II) in the kidney. We used a NO-sensitive microelectrode to study the effect of ANG II on NO release, and to determine the effect of selective inhibition of the ANG II subtype I receptor (AT1) with losartan (LOS) and candesartan (CAN). NO release from isolated and perfused renal resistance arteries was measured with a porphyrin-electroplated, carbon fiber. The vessels were microdissected from isolated perfused rat kidneys and perfused at constant flow and pressure in vitro. The NO-electrode was placed inside the glass collection cannula to measure vessel effluent NO concentration. ANG II stimulated NO release in a dose-dependent fashion: 0.1 nM, 10 nM and 1000 nM ANG II increased NO-oxidation current by 85+/-18 pA (n = 11), 148+/-22 pA (n = 11), and 193+/-29 pA (n = 11), respectively. These currents correspond to changes in effluent NO concentration of 3.4+/-0.5 nM, 6.1+/-1.1 nM, and 8.2+/-1.3 nM, respectively. Neither LOS (1 muM) nor CAN (1 nM) significantly affected basal NO production, but both AT1-receptor blockers markedly blunted NO release in response to ANG II (10 nM): 77+/-6% inhibition with LOS (n = 8) and 63+/-9% with CAN (n = 8). These results are the first to demonstrate that ANG II stimulates NO release in isolated renal resistance arteries, and that ANG II-induced NO release is blunted by simultaneous AT1-receptor blockade. Our findings suggest that endothelium-dependent modulation of ANG II-induced vasoconstriction in renal resistance arteries is mediated, at least in part, by AT1-receptor-dependent NO release.  相似文献   

18.
An abnormal hemodynamic response to stressful stimuli has been proposed as a mechanism involved in the higher prevalence of hypertension in blacks. Given the important role of nitric oxide (NO) in the regulation of cardiovascular homeostasis, we investigated the possibility of racial differences in vascular NO activity during mental stress. To test this hypothesis, we compared the forearm blood flow (FBF) response to mental stress in 14 white and 12 black healthy subjects during intra-arterial infusion of either saline or NO synthesis inhibitor N(G)-monomethyl-L-arginine (L-NMMA; 4 micromol/min). We also examined vascular responses of the two groups to intra-arterial infusion of sodium nitroprusside (0.8 to 3.2 microg/min), an exogenous NO donor. During saline infusion, the increase in FBF from baseline induced by mental stress was significantly higher in whites than in blacks (109+/-20% versus 58+/-8%; P=0.03). L-NMMA significantly reduced stress-induced increase in FBF in whites (from 109+/-20% to 54+/-11%; P=0.004) but not in blacks (from 58+/-8% to 42+/-10%; P=0.24); thus, the vasodilator effect of stress testing during L-NMMA was similar in whites and blacks (54+/-11% versus 42+/-10%; P=0.44). The vasodilator response to sodium nitroprusside was also lower in blacks than in whites (maximum flow, 6.9+/-2 versus 11.6+/-3.5 mL x min(-1) x dL(-1); P=0.001) and was not significantly modified by L-NMMA in either group. Our findings indicate that blacks have a reduced NO-dependent vasodilator activity during mental stress. This difference seems related to reduced sensitivity of smooth muscle to the vasodilator effect of NO and may play some role in the increased prevalence of hypertension and its complications in blacks.  相似文献   

19.
We investigated the role of nitric oxide (NO) in inflammatory hyperalgesia. Coinjection of prostaglandin E2 (PGE2) with the nitric oxide synthase (NOS) inhibitor NG-methyl-L-arginine (L-NMA) inhibited PGE2-induced hyperalgesia. L-NMA was also able to reverse that hyperalgesia. This suggests that NO contributes to the maintenance of, as well as to the induction of, PGE2-induced hyperalgesia. Consistent with the hypothesis that the NO that contributes to PGE2-induced sensitization of primary afferents is generated in the dorsal root ganglion (DRG) neurons themselves, L-NMA also inhibited the PGE2-induced increase in tetrodotoxin-resistant sodium current in patch-clamp electrophysiological studies of small diameter DRG neurons in vitro. Although NO, the product of NOS, often activates guanylyl cyclase, we found that PGE2-induced hyperalgesia was not inhibited by coinjection of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a guanylyl cyclase inhibitor. We then tested whether the effect of NO depended on interaction with the adenylyl cyclase-protein kinase A (PKA) pathway, which is known to mediate PGE2-induced hyperalgesia. L-NMA inhibited hyperalgesia produced by 8-bromo-cAMP (a stable membrane permeable analog of cAMP) or by forskolin (an adenylyl cyclase activator). However, L-NMA did not inhibit hyperalgesia produced by injection of the catalytic subunit of PKA. Therefore, the contribution of NO to PGE2-induced hyperalgesia may occur in the cAMP second messenger pathway at a point before the action of PKA. We next performed experiments to test whether administration of exogenous NO precursor or donor could mimic the hyperalgesic effect of endogenous NO. Intradermal injection of either the NOS substrate L-arginine or the NO donor 3-(4-morphinolinyl)-sydnonimine hydrochloride (SIN-1) produced hyperalgesia. However, this hyperalgesia differed from PGE2-induced hyperalgesia, because it was independent of the cAMP second messenger system and blocked by the guanylyl cyclase inhibitor ODQ. Therefore, although exogenous NO induces hyperalgesia, it acts by a mechanism different from that by which endogenous NO facilitates PGE2-induced hyperalgesia. Consistent with the hypothesis that these mechanisms are distinct, we found that inhibition of PGE2-induced hyperalgesia caused by L-NMA could be reversed by a low dose of the NO donor SIN-1. The following facts suggest that this dose of SIN-1 mimics a permissive effect of basal levels of NO with regard to PGE2-induced hyperalgesia: (1) this dose of SIN-1 does not produce hyperalgesia when administered alone, and (2) the effect was not blocked by ODQ. In conclusion, we have shown that low levels of NO facilitate cAMP-dependent PGE2-induced hyperalgesia, whereas higher levels of NO produce a cGMP-dependent hyperalgesia.  相似文献   

20.
BACKGROUND: NO regulates vascular tone and structure, platelets, and monocytes. NO is synthesized by endothelial NO synthase (eNOS). Endothelial dysfunction occurs in atherosclerosis. METHODS AND RESULTS: With a porphyrinic microsensor, NO release was measured in atherosclerotic human carotid arteries and normal mammary arteries obtained during surgery. eNOS protein expression was analyzed by immunohistochemistry. In normal arteries, the initial rate of NO release after stimulation with calcium ionophore A23187 (10 micromol/L) was 0.42+/-0.05 (micromol/L)/s (n=10). In contrast, the initial rate of NO release was markedly reduced in atherosclerotic segments, to 0.08+/-0.04 (micromol/L)/s (n=10, P<0.0001). NO peak concentration in normal arteries was 0.9+/-0.09 micromol/L (n=10) and in atherosclerotic segments, 0.1+/-0.03 micromol/L (n=10, P<0.0001). Reduced NO release in atherosclerotic segments was accompanied by marked reduction of immunoreactive eNOS in luminal endothelial cells, although specific endothelial cell markers (CD31) were present (n=13). Endothelial cells of vasa vasorum of atherosclerotic segments, however, remained positive for eNOS, as was the endothelium of normal arteries. CONCLUSIONS: In clinically relevant human atherosclerosis, eNOS protein expression and NO release are markedly reduced. This may be involved in the progression of atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号