首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of temperature (28, 37 and 42 °C) and pH (6 and 7) on the biofilm formation capability of Salmonella Typhimurium on stainless steel and acrylic was investigated. The rate of biofilm formation increased with increasing temperature and pH, while the number of attached cells after 240 h decreased with increasing temperature and was not different between pH 6 and 7. The surface hydrophobicity of bacterial cells was not significantly (p > 0.05) different among tested conditions. Electron-donating/accepting properties changed with pH and temperature, although these changes did not correlate with the ability to form biofilms under respective conditions. Attachment of S. Typhimurium showed a preference for stainless steel compared to acrylic surfaces under all conditions tested. The results suggest that salmonellae were less adherent to acrylic than to stainless steel surfaces; thus, acrylic-type surfaces should be considered for use in the food industry over stainless steel where applicable. The rate of biofilm formation increased at higher temperatures and pH levels within the tested ranges. Hurdle technology using lower temperatures reduced pH may help delay biofilm formation on food contact surfaces contaminated with S. Typhimurium.  相似文献   

2.
Cells of Salmonella enterica serovar Enteritidis were grown at 25 and 35 degrees C, heat injured (55, 60, and 62.5 degrees C), and recovered in tryptic soy broth (TSB) at various NaCl concentrations (2.0 and 3.5%) and pH levels (5.5 and 6.5). To assess the interactions of growth temperature, heating temperature, NaCl concentration and pH on the thermal injury and recovery of Salmonella Enteritidis in ground chicken, a randomized design with each experimental combination was used. When a logistic equation for nonlinear survival curves was used, D-values of cells of Salmonella Enteritidis grown at 25 degrees C were 7.60, 5.73, and 4.81 min at 55, 60, and 62.5 degrees C, respectively. For cells grown at 35 degrees C, the D-values were 12.38, 7.45, and 5.70 min at 55, 60, and 62.5 degrees C. The influence of tryptic soy agar and double modified lysine agar (DMLIA) on the recovery of heat-injured cells was determined. Recovery was significantly reduced on DMLIA at increased pH levels and NaCl concentrations. Higher numbers of cells were recovered in TSB with 2.0% NaCl than in TSB with 3.5% NaCl. It was observed that the rate of recovery of heat-injured cells was similar at each pH. Therefore, a pH range of 5.5 to 6.5 does not have a major inhibitory effect on the recovery of Salmonella Enteritidis.  相似文献   

3.
The influence of exopolysaccharide (EPS) production, nutrient availability, and temperature on attachment and biofilm formation by Escherichia coli O157:H7 strains ATCC 43895 (wild type) and 43895-EPS (extensive EPS-producing mutant) on stainless steel coupons (SSCs) was investigated. Cells grown on heated lettuce juice agar and modified tryptic soy agar were suspended in phosphate-buffered saline (PBS). SSCs were immersed in the cell suspension (10(9) CFU/ml) at 4 degrees C for 24 h. Biofilm formation by cells attached to SSCs as affected by immersing in 10% tryptic soy broth (TSB), lettuce juice broth (LJB), and minimal salts broth (MSB) at 12 and 22 degrees C was studied. A significantly lower number of strain 43895-EPS cells, compared to strain ATCC 43895 cells, attached to SSCs during a 24-h incubation (4 degrees C) period in PBS suspension. Neither strain formed a biofilm on SSCs subsequently immersed in 10% TSB or LJB, but both strains formed biofilms in MSB. Populations of attached cells and planktonic cells of strain ATCC 43895 gradually decreased during incubation for 6 days in LJB at 22 degrees C, but populations of strain 43895-EPS remained constant for 6 days at 22 degrees C, indicating that the EPS-producing mutant, compared to the wild-type strain, has a higher tolerance to the low-nutrient environment presented by LJB. It is concluded that EPS production by E. coli O157:H7 inhibits attachment to SSCs and that reduced nutrient availability enhances biofilm formation. Biofilms formed under conditions favorable for EPS production may protect E. coli O157:H7 against sanitizers used to decontaminate lettuce and produce processing environments. Studies are under way to test this hypothesis.  相似文献   

4.
Strain variability of the growth behavior of foodborne pathogens has been acknowledged as an important issue in food safety management. A stochastic model providing predictions of the maximum specific growth rate (μmax) of Salmonella enterica as a function of pH and water activity (aw) and integrating intra-species variability data was developed. For this purpose, growth kinetic data of 60 S. enterica isolates, generated during monitoring of growth in tryptone soy broth of different pH (4.0-7.0) and aw (0.964-0.992) values, were used. The effects of the environmental parameters on μmax were modeled for each tested S. enterica strain using cardinal type and gamma concept models for pH and aw, respectively. A multiplicative without interaction-type model, combining the models for pH and aw, was used to describe the combined effect of these two environmental parameters on μmax. The strain variability of the growth behavior of S. enterica was incorporated in the modeling procedure by using the cumulative probability distributions of the values of pHmin, pHopt and awmin as inputs to the growth model. The cumulative probability distribution of the observed μmax values corresponding to growth at pH 7.0-aw 0.992 was introduced in the place of the model's parameter μopt. The introduction of the above distributions into the growth model resulted, using Monte Carlo simulation, in a stochastic model with its predictions being distributions of μmax values characterizing the strain variability. The developed model was further validated using independent growth kinetic data (μmax values) generated for the 60 strains of the pathogen at pH 5.0-aw 0.977, and exhibited a satisfactory performance. The mean, standard deviation, and the 5th and 95th percentiles of the predicted μmax distribution were 0.83, 0.08, and 0.69 and 0.96 h− 1, respectively, while the corresponding values of the observed distribution were 0.73, 0.09, and 0.61 and 0.85 h− 1. The stochastic modeling approach developed in this study can be useful in describing and integrating the strain variability of S. enterica growth kinetic behavior in quantitative microbiology and microbial risk assessment.  相似文献   

5.
The growth limits of a mixture of five strains of Salmonella Typhimurium in tryptic soy broth were examined at different environmental conditions. The response of the pathogen was monitored in a total of 350 combination treatments of temperature (10 to 35 degrees C), pH (3.76 to 6.44), and water activity (aw, 0.913 to 0.990) for 62 days. No growth/growth (turbidity) data were modeled by logistic polynomial regression. The concordance index of the logistic model was 99.8%, indicating a good fit to the observed data. The minimum pH and aw values that permitted growth were 3.94 and 0.942, respectively, and occurred in the temperature range of 25 to 35 degrees C. At temperatures below this range, the minimum pH and aw allowing growth increased as the temperature decreased. The results showed an abrupt change in the probability of growth close to the boundary with minor changes of the environmental factors. The probabilities predicted by the model were compared with published data on the actual response of Salmonella Typhimurium or other salmonellae serotypes in 50 cases of food products, including salad dressing, mayonnaise, meat, cheese, vegetables, and fruits. The model predicted successfully the response of the pathogen in 90% of the tested cases. The results of the study indicated that the developed model predicts satisfactorily the growth/no growth interface of Salmonella Typhimurium in foods and can provide useful quantitative data for the development of safer food products and processes.  相似文献   

6.
A mathematical model was developed to predict growth and histamine formation by Morganella psychrotolerans depending on temperature (0-20 degrees C), atmosphere (0-100% CO2), NaCl (0.0-6.0%) and pH (5.4-6.5). Data from experiments with both sterile tuna meat and Luria Bertani broth was used to develop the mathematical growth and histamine formation model. The expanded Logistic model with a growth dampening parameter (m) of 0.7 was used as primary growth model. A primary model for histamine formation during storage was obtained by combining the expanded Logistic growth model with a yield factor (YHis/CFU). 120 maximum specific growth rate (micromax)-values were generated for M. psychrotolerans and used to model the combined effect of the studied environmental parameters. A simple cardinal parameter type secondary model was used to model the effect of the four parameters on micro(max). The maximum population density (log Nmax) was correlated with log (YHis/CFU) and a simple constrained polynomial (quadratic) secondary model was developed for the effect of the environmental conditions on these model parameters. The developed model describes the effect of initial cell concentrations, storage conditions and product characteristics on histamine formation. This is a significant progress compared to previously available models for the effect of storage temperature only.  相似文献   

7.
Bacterial colonization and biofilm formation on stainless steel (SS) surfaces can be sources for cross contamination in food processing facilities, possessing a great threat to public health and food quality. Here the aim was to demonstrate the influence of surface finish of AISI 316 SS on colonization, biofilm formation and susceptibility of Salmonella Typhimurium to disinfection.  相似文献   

8.
A response surface model was developed to describe the effects of temperature (35 to 55 degrees C), pH (3.5 to 5.5), and water activity (a(w), 0.960 to 0.992) on germination of Alicyclobacillus acidoterrestris spores. Germination and growth or viability loss depended, to varying extents, on the interactions among the independent variables and the complexity of the medium. In particular, maximum growth was achieved at temperatures between 35 and 42 degrees C and at pH values from 3.5 to 4.5. The model was validated against data not used in its development. Bias factors of 0.999 and 0.817 for 2- and 7-day models, respectively, were obtained, indicating that the models were "fail safe." Results indicated that the model provided reliable predictions of growth of A. acidoterrestris spores.  相似文献   

9.
Antimicrobial efficacy of Satureja thymbra essential oil against Listeria monocytogenes Scott A and Salmonella ser. Enteritidis PT4 was evaluated in vitro by modeling the growth boundaries at various temperatures, pH, and NaCl concentrations. Growth-no growth (turbidity) data were modeled by logistic polynomial regression. The concordance indices and the Hosmer- Lemeshow statistics of both logistic models indicated a good fit to the observed data. Salmonella Enteritidis was more sensitive at increasing salt content as compared with L. monocytogenes. On the other hand, pH changes had greater effect on growth initiation of L. monocytogenes than they had on growth initiation of Salmonella Enteritidis. Presence of essential oil up to 0.06% (vol/vol) had no or little effect on growth initiation of both microorganisms tested, while the concentration of 0.1% (vol/vol) essential oil exhibited great inhibition on growth initiation, especially when it was combined with increased salt content and low temperatures. The antimicrobial potency of S. thymbra essential oil was more pronounced when multiple hurdles were applied. Modeling the growth boundaries offers a useful tool to food microbiologists for assessing the antimicrobial activity in a range of food preservation conditions as compared with the conventional MIC determination.  相似文献   

10.
The combined effects of water activity (aw), pH and temperature on the germination and growth of seven xerophilic fungi important in the spoilage of baked goods and confectionery were examined. Eurotium rubrum, E. repens, Wallemia sebi, Aspergillus penicillioides, Penicillium roqueforti, Chrysosporium xerophilum and Xeromyces bisporus were grown at 25, 30 and 37 degrees C on media with pH values of 4.5, 5.5, 6.5 and 7.5 and a range of water activities (aw) from 0.92 to 0.70. The aw of the media was controlled with a mixture of equal parts of glucose and fructose. Temperature affected the minimum aw for germination for most species. For example, P. roqueforti germinated at 0.82 aw at 25 degrees C, 0.86 aw at 30 degrees C and was unable to germinate at 37 degrees C. E. repens germinated at 0.70 aw at 30 degrees C, but at 25 and 37 degrees C, its minimum aw for germination was 0.74. C. xerophilum and X. bisporus germinated at 0.70 aw at all three temperatures. The optimum growth occurred at 25 degrees C for P. roqueforti and W. sebi, at 30 degrees C for Eurotium species, A. penicillioides and X. bisporus and at 37 degrees C for C. xerophilum. These fungi all grew faster under acidic than neutral pH conditions. The data presented here provide a matrix that will be used in the development of a mathematical model for the prediction of the shelf life of baked goods and confectionery.  相似文献   

11.
A study was done to determine if a four-strain mixture of multidrug-resistant Salmonella typhimurium definitive type 104 (DT104) cells and a four-strain mixture of S. typhimurium non-DT104 cells differed in ability to survive in whole egg powder, whole egg powder supplemented with corn syrup solids (38%) and salt (1.9%), egg yolk powder, and egg white powder as affected by a(w)(0.29-0.37 and 0.51-0.61) during storage at 13 or 37 degrees C for 8 weeks. Rates of inactivation of S. typhimurium DT104 and non-DT104 cells were similar within each set of test parameters. With the exception of whole egg powder supplemented with corn syrup solids and salt, death was enhanced at a(w) 0.29-0.37 compared to a(w) 0.51-0.61 when powders were stored at 13 degrees C. Survival of cells in whole egg powder supplemented with corn syrup solids and salt was significantly (P < or = 0.05) higher compared to survival in other egg powders stored at 13 degrees C. The opposite trend occurred in powders at a(w) 0.5-0.61 stored at 37 degrees C. Survival of S. typhimurium DT104 and non-DT104 cells at initial populations of 5.01-5.39 log10 cfu/g of egg white powder containing 4.9, 6.1, or 8.2% moisture at 54 or 82 degrees C for 7 days or 8 h, respectively, was determined. Rates of inactivation of DT104 and non-DT104 cells did not differ. Both cell types were detected in egg white powder containing 4.9% moisture but not in powder containing 8.2% moisture when held at 54 degrees C for 7 days. Heating at 82 degrees C for 8 h failed to eliminate 5 log10 S. typhimurium per g of egg white powder, regardless of the moisture content.  相似文献   

12.
Food Science and Biotechnology - Biofilm is a serious issue in the dairy factory due to it increases the opportunity for microbial contamination. Staphylococcus aureus and Pseudomonas aeruginosa...  相似文献   

13.
研究了温度、pH、Aw、木糖醇对奶油蛋糕褐变的影响.通过设置栅栏,来观察各个因子对褐变的影响.结果表明:低温、低pH能够抑制奶油蛋糕的褐变,适当降低Aw值能够显著延缓褐变,30%木糖醇替代能够有效地延缓褐变,同时不影响蛋糕的组织结构.  相似文献   

14.
A study was conducted to evaluate the efficacy of electrolyzed acidic water, 200-ppm chlorine water, and sterile distilled water in killing Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes on the surfaces of spot-inoculated tomatoes. Inoculated tomatoes were sprayed with electrolyzed acidic water, 200-ppm chlorine water, and sterile distilled water (control) and rubbed by hand for 40 s. Populations of E. coli O157:H7, Salmonella, and L. monocytogenes in the rinse water and in the peptone wash solution were determined. Treatment with 200-ppm chlorine water and electrolyzed acidic water resulted in 4.87- and 7.85-log10 reductions, respectively, in Escherichia coli O157:H7 counts and 4.69- and 7.46-log10 reductions, respectively, in Salmonella counts. Treatment with 200-ppm chlorine water and electrolyzed acidic water reduced the number of L. monocytogenes by 4.76 and 7.54 log10 CFU per tomato, respectively. This study's findings suggest that electrolyzed acidic water could be useful in controlling pathogenic microorganisms on fresh produce.  相似文献   

15.
16.
The influence of four heat‐processing regimes and a storage phase on the behaviour of Listeria monocytogenes in ground pork was studied. The effects of pH and water activity (aw) were also tested. During the heat process phase, aw, the heat‐processing regime and its interactions with pH or aw, had a significant effect on the behaviour of L. monocytogenes. During the storage phase, all parameters tested and their interactions had significant effects. Nevertheless, the area in which the growth of L. monocytogenes was observed at the end of the experiment was not influenced by the heat‐processing regime tested. On the contrary, pH, aw and their interactions had significant effects on Listeria behaviour. The boundary of the growth area delimited by environmental conditions where growth was higher than 1.0 Log CFU g?1 from those where growth was lower than this limit was correctly predicted by Augustin's model.  相似文献   

17.
Lin LC  Beuchat LR 《Food microbiology》2007,24(7-8):767-777
Enterobacter sakazakii infections in preterm neonates and infants have been epidemiologically associated with consumption of reconstituted powdered infant formula. The bacterium has been isolated from grain, infant cereals, and cereal factory environments. A study was done to determine the survival characteristics of E. sakazakii initially at populations of 0.31 and 5.03 logCFU/g of infant rice cereal (a(w) 0.30, 0.45-0.46, and 0.68-0.69). Cereal was stored at 4, 21, and 30 degrees C and populations were monitored for up to 12 months. Survival of the pathogen in infant rice, barley, oatmeal, and mixed grain cereals (a(w) 0.63-0.66, 0.76, or 0.82-0.83) initially containing a population of 4.93-5.64 logCFU/g and held at 4, 21, and 30 degrees C up to 24 weeks was determined. Populations decreased significantly (p < or = 0.05) in all cereals stored at 21 and 30 degrees C regardless of a(w). Increases in a(w) or storage temperature accelerated the rate of death of E. sakazakii in dry infant cereals. However, at an initial population of 0.31 logCFU/g, E. sakazakii survived in rice cereal (a(w) 0.30-0.69) for up to 12 months at all storage temperatures. Survival of E. sakazakii was not affected by the composition of dry infant rice, barley, mixed grain, and oatmeal cereals (initial a(w) 0.63-0.83) stored for up to 24 weeks at 4, 21, or 30 degrees C. This study demonstrated that E. sakazakii can survive for up to 12 months in infant cereals having a wide range of a(w) when storage is at temperatures simulating those to which they may be exposed during distribution, at retail, and in the home.  相似文献   

18.
In this study, the growth of Salmonella Typhimurium in Tryptic Soy Broth was examined at different pH (4.50-5.50), water activity a(w) (0.970-0.992) and gelatin concentration (0%, 1% and 5% ) at 20 degrees C. Experiments in TSB with 0% gelatin were carried out in shaken erlenmeyers, in the weak 1% gelatin media in petri plates and in the firm 5% gelatin media in gel cassettes. A quantification of gel strength was performed by rheological measurements and the influence of oxygen supply on the growth of S. Typhimurium was investigated. pH, as well as a(w) as well as gelatin concentration had an influence on the growth rate. Both in broth and in gelatinized media, lowering pH or water activity caused a decrease of growth rate. In media with 1% gelatin a reduction of growth rate and maximal cell density was observed compared to broth at all conditions. However, the effects of decreasing pH and a(w) were less pronounced. A further increase in gelatin concentration to 5% gelatin caused a small or no additional drop of growth rate. The final oxygen concentration dropped from 5.5 ppm in stirred broth to anoxic values in petri plates, also when 0% and 5% gelatin media were tested in this recipient. Probably, not stirring the medium, which leads to anoxic conditions, has a more pronounced effect on the growth rate of S. Typhimurium then medium solidness. Finally, growth data were fitted with the primary model of Baranyi and Roberts [Baranyi, J. and Roberts, T. A., 1994. A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology 23, 277-294]. An additional factor was introduced into the secondary model of Ross et al. [Ross, T. and Ratkowsky, D. A. and Mellefont, L. A. and McMeekin, T. A., 2003. Modelling the effects of temperature, water activity, pH and lactic acid concentration on the growth rate of Escherichia coli. International Journal of Food Microbiology 82, 33-43.] to incorporate the effect of gelatin concentration, next to the effect of pH and a(w). A two step and a global regression procedure were applied. Both procedures were able to fit the data well, but the global regression procedure led to smaller standard errors on the parameters.  相似文献   

19.
A study was done to determine survival characteristics of Enterobacter sakazakii in four milk-based and two soybean-based powdered infant formulas. A 10-strain mixture of E. sakazakii was inoculated into the six infant formulas at water activity (aw) 0.25 to 0.30, 0.31 to 0.33, and 0.43 to 0.50 to give low (0.80 log CFU/g) and high (4.66 to 4.86 log CFU/g) populations. At an initial population of 0.80 log CFU/g, E. sakazakii was detected by enrichment in six of six, four of six, and one of six formulas stored for 12 months at 4, 21, and 30 degrees C, respectively. In four of six formulas at aw values of 0.25 to 0.30, initially high populations decreased significantly (P < or = 0.05), although by less than 1 log CFU/g, within 6 months at 4 degrees C. Populations decreased significantly in all formulas in the aw range of 0.25 to 0.50 during storage for 1 month at 21 or 30 degrees C and again between 1 and 6 months in most formulas. Significant reductions occurred between 6 and 12 months in some formulas. At all storage temperatures, reductions in populations tended to be greater in formulas at aw 0.43 to 0.50 than in formulas at aw 0.25 to 0.30. The rate of inactivation of E. sakazakii in formulas was not markedly influenced by formula composition. Cells from mucoid and nonmucoid colonies formed by two strains on violet red bile glucose agar supplemented with pyruvate were inoculated into a milk-based powdered infant formula and a soybean-based powdered infant formula having a high aw range of 0.43 to 0.86 and stored at 4, 21, and 30 degrees C for up to 36 weeks. With few exceptions, populations of both strains decreased significantly in both formulas within 2 weeks at all temperatures; rates of death increased with increased aw and storage temperature. The presence of mucoidal extracellular materials on the surface of E. sakazakii cells was not associated with protection against death. This study shows that the retention of viability of E. sakazakii in powdered infant formula is affected by a, and temperature. Increases in both parameters cause an increase in the rate of death.  相似文献   

20.
Iceberg lettuce is a major component in vegetable salad and has been associated with many outbreaks of foodborne illnesses. In this study, several combinations of lactic acid and hydrogen peroxide were tested to obtain effective antibacterial activity without adverse effects on sensory characteristics. A five-strain mixture of Escherichia coli O157:H7, Salmonella enterica serotype Enteritidis, and Listeria monocytogenes was inoculated separately onto fresh-cut lettuce leaves, which were later treated with 1.5% lactic acid plus 1.5% hydrogen peroxide (H2O2) at 40 degrees C for 15 min, 1.5% lactic acid plus 2% H2O2 at 22 degrees C for 5 min, and 2% H2O2 at 50 degrees C for 60 or 90 s. Control lettuce leaves were treated with deionized water under the same conditions. A 4-log reduction was obtained for lettuce treated with the combinations of lactic acid and H2O2 for E. coli O157:H7 and Salmonella Enteritidis, and a 3-log reduction was obtained for L. monocytogenes. However, the sensory characteristics of lettuce were compromised by these treatments. The treatment of lettuce leaves with 2% H2O2 at 50 degrees C was effective not only in reducing pathogenic bacteria but also in maintaining good sensory quality for up to 15 days. A < or = 4-log reduction of E. coli O157:H7 and Salmonella Enteritidis was achieved with the 2% H2O2 treatment, whereas a 3-log reduction of L. monocytogenes was obtained. There was no significant difference (P > 0.05) between pathogen population reductions obtained with 2% H2O2 with 60- and 90-s exposure times. Hydrogen peroxide residue was undetectable (the minimum level of sensitivity was 2 ppm) on lettuce surfaces after the treated lettuce was rinsed with cold water and centrifuged with a salad spinner. Hence, the treatment of lettuce with 2% H2O2 at 50 degrees C for 60 s is effective in initially reducing substantial populations of foodborne pathogens and maintaining high product quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号