首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown, employing direct measurements with electron spin resonance (ESR) spectroscopy, that hypoxia induces an increased production of oxygen free radicals (OFR) in the brain of the guinea pig fetus. The present study using the same approach, investigated the effects of maturity and Mg2+-pretreatment on hypoxia-induced OFR formation in the guinea pig fetal brain. The normoxic and the hypoxic groups were exposed for 60 min to 21% or 7% oxygen, respectively. The control group consisted of term fetuses exposed to normoxia (n=7) and hypoxia (n=7). The experimental groups consisted of the following: (a) for the investigation on maturity effect, preterm fetuses (40 days) exposed to normoxia (n=6) or hypoxia (n=6); and (b) for the Mg2+-pretreatment investigation, term fetuses (60 days) exposed to normoxia (n=6) or hypoxia (n=6) following maternal pretreatment with Mg2+ which consisted of an initial bolus of MgSO4 (600 mg/kg, i.p.) 1 h prior to hypoxia followed by a second dose (300 mg/kg, i.p.). Oxygen free radicals were measured by ESR spectroscopy in the fetal cerebral cortical tissue utilizing phenyl-N-tert-butylnitrone (PBN) spin trapping. Fetal brain tissue hypoxia was documented biochemically by decreased tissue levels of ATP and phosphocreatine. In the control group of term fetuses, the cortical tissue from hypoxic fetuses showed a significant increase in spin adducts (71% increase, p<0.01). In the preterm group, the cortical tissue from hypoxic fetuses showed a 33% increase in spin adducts (p<0.001). The baseline free radical generation during normoxia was 22.5% higher at preterm than at term (41.4+/-3.5 units/g issue vs. 33.8+/-9.3 units/g tissue, p<0.05). In Mg2+-treated groups, spin adduct levels in cortical tissue from hypoxic fetuses did not significantly differ from those of the normoxic group (30.2+/-9.9 units/g tissue, normoxic-Mg2+ vs. 30. 6+/-8.1 units/g tissue, hypoxic-Mg2+). The results indicate that the fetal brain at term may be more susceptible to hypoxia-induced free radical damage than at preterm and that Mg2+ administration significantly decreased the hypoxia-induced increase in oxygen free radical generation in the term fetal guinea pig brain in comparison with non-treated hypoxic group.  相似文献   

2.
JJ Kim  DG Moon  SK Koh 《Canadian Metallurgical Quarterly》1998,10(3):145-50; discussion 151
Previous in vitro studies have demonstrated that the cavernous relaxation under hypoxia does not involve the endothelium dependent mechanism. However, the mechanism of nitric oxide pathway under hypoxia are not fully evaluated or understood yet in vivo. The changes of intracavernous pressure to various vasoactive substances were monitored in 45 mature male cats in vivo under normoxia and hypoxia (pH: 7.03, PO2: 25.52 mmHg, PCO2: 84.66 mmHg). L-arginine and SNAP (s-nitroso-n-acetyl-penicillamine) produced cavernous relaxation under normoxia, but not under hypoxia (n = 19, P < 0.01). The L-arginine-induced relaxations were inhibited by L-NAME (N omega-nitro-1-arginine-methyl-ester) or methylene blue under normoxia (n = 19, P < 0.01). The cavernous relaxation was 58% suppressed under hypoxia compared to normoxia with 10(-3) M/0.2 ml of acetylcholine (n = 22, P < 0.01). Moreover, L-NAME attenuated the acetylcholine-induced relaxation under normoxia, but not under hypoxia (n = 22, P < 0.05). Epinephrine suppressed the acetylcholine-induced relaxation in both conditions (n = 10, P < 0.01), while indomethacin significantly potentiated the acetylcholine-induced relaxation under normoxia compared to hypoxia (n = 6, P < 0.05). However, none of these substances responded in severe hypoxia (PO2 < 15 mmHg, n = 3). These results suggest that erectile and contractile responses are attenuated under hypoxia. The endothelium derived relaxation via nitric oxide does not play a role in cavernous relaxation under definitive hypoxia with acidosis like in ischemic priapism (PO2 < 30 mmHg, pH < 7.25).  相似文献   

3.
BACKGROUND: The authors' objective was to assess the extent to which sevoflurane and desflurane anesthesia alter the magnitude of hypoxic pulmonary vasoconstriction compared with the response measured in the same animal in the conscious state. METHODS: Left pulmonary vascular pressure-flow plots were generated in seven chronically instrumented dogs by continuously measuring the pulmonary vascular pressure gradient (pulmonary arterial pressure-left atrial pressure) and left pulmonary blood flow during gradual (approximately 1 min) inflation of a hydraulic occluder implanted around the right main pulmonary artery. Pressure-flow plots were generated during normoxia and hypoxia on separate days in the conscious state, during sevoflurane (approximately 3.5% end-tidal), and during desflurane (approximately 10.5% end-tidal) anesthesia. Values are mean+/-SEM. RESULTS: In the conscious state, administration of the hypoxic gas mixture by conical face mask decreased (P < 0.01) systemic arterial PO2 from 94+/-2 mmHg to 50+/-1 mmHg and caused a leftward shift (P < 0.01) in the pressure-flow relationship, indicating pulmonary vasoconstriction. The magnitude of hypoxic pulmonary vasoconstriction in the conscious state was flow-dependent (P < 0.01). Neither anesthetic had an effect on the baseline pressure-flow relationship during normoxia. The magnitude of hypoxic pulmonary vasoconstriction during sevoflurane and desflurane was also flow-dependent (P < 0.01). Moreover, at any given value of flow the magnitude of hypoxic pulmonary vasoconstriction was similar during sevoflurane and desflurane compared with the conscious state. CONCLUSION: These results indicate that hypoxic pulmonary vasoconstriction is preserved during sevoflurane and desflurane anesthesia compared with the conscious state. Thus, inhibition of hypoxic pulmonary vasoconstriction is not a general characteristic of inhalational anesthetics. The flow-dependent nature of the response should be considered when assessing the effects of physiologic or pharmacologic interventions on the magnitude of hypoxic pulmonary vasoconstriction.  相似文献   

4.
Six male rowers rowed maximally for 2500 m in ergometer tests during normoxia (fractional concentration of oxygen in inspired air, F(I)O2 0.209), in hyperoxia (F(I)O2 0.622) and in hypoxia (F(I)O2 0.158) in a randomized single-blind fashion. Oxygen consumption (VO2), force production of strokes as well as integrated electromyographs (iEMG) and mean power frequency (MPF) from seven muscles were measured in 500-m intervals. The iEMG signals from individual muscles were summed to represent overall electrical activity of these muscles (sum-iEMG). Maximal force of a stroke (Fmax) decreased from the 100% pre-exercise maximal value to 67 (SD 12)%, 63 (SD 15)% and 76 (SD 13)% (P < 0.05 to normoxia, ANOVA) and impulse to 78 (SD 4)%, 75 (SD 14)% and 84 (SD 7)% (P < 0.05) in normoxia, hypoxia and hyperoxia, respectively. A strong correlation between Fmax and VO2 was found in normoxia but not in hypoxia and hyperoxia. The mean sum-iEMG tended to be lower (P < 0.05) in hypoxia than in normoxia but hyperoxia had no significant effect on it. In general, F(I)O2 did not affect MPF of individual muscles. In conclusion, it was found that force output during ergometer rowing was impaired during hypoxia and improved during hyperoxia when compared with normoxia. Moreover, the changes in force output were only partly accompanied by changes in muscle electrical activity as sum-iEMG was affected by hypoxic but not by hyperoxic gas. The lack of a significant correlation between Fmax and VO2 during hypoxia and hyperoxia may suggest a partial uncoupling of these processes and the existence of other limiting factors in addition to VO2.  相似文献   

5.
The purpose of these studies was to examine the effects of hypoxia on alpha 1-adrenergic receptor (alpha 1AR) mediated phosphatidylinositol (PI) turnover in cultured neonatal rat cardiac myocytes. Cells were pre-labeled with [3H]-inositol and incubated for 1 h in either normoxia or hypoxia. Phenylephrine, an alpha 1AR agonist, was added at various time intervals (0-60 min) before termination of the incubation. There was a time-dependent release of radioactivity from the lipid fraction to the aqueous fraction with alpha 1AR stimulation. alpha 1AR-mediated PI turnover was biphasic in normoxic cells and monophasic in hypoxic cells. Using ion-exchange chromatography, radioactivity in the inositol trisphosphate (IP3) peak was increased with acute phenylephrine stimulation (5 min) in the normoxic cells, while inositol phosphate (IP) and inositol bisphosphate (IP2) were increased with chronic stimulation (60 min). After 5 min of alpha 1AR stimulation, hypoxia did not alter total aqueous radioactivity when compared to normoxia, but there was a significant increase in IP2. However, there was decreased PI turnover in chronically stimulated (30-60 min) hypoxic cells when compared to normoxic cells. Hypoxia had no effect on radioactivity in the IP3 fraction with either 0, 5, or 60 min of alpha 1AR stimulation, but there was a significant increase in [1,4,5]-IP3 in hypoxic cells with 30 s alpha 1AR stimulation. With hypoxia, there was no difference in radioactivity in the phosphatidylinositols with either 0 or 5 min stimulation when compared to normoxia. However, after 60 min of alpha 1AR stimulation, hypoxia resulted in increased PI and PIP, when compared to normoxic cells, but PIP2 radioactivity was unchanged. There was no effect of pertussis toxin on either the acute or chronic phase of PI turnover, negating involvement of Gi or G(o). These data suggest that alpha 1AR stimulation in neonatal rat cardiac myocytes is biphasic, and that hypoxia produces a slower monophasic response during extended alpha 1-agonist exposure as would be found with ischemia.  相似文献   

6.
OBJECTIVE: Elevated levels of the potent vasoactive peptide endothelin (ET), have been found in pathophysiological conditions associated with pulmonary hypertension. In this study, we have investigated the effects of the ETA receptor antagonist, BMS-182874, on hypoxic pulmonary hypertension in pigs. METHODS: Pigs were subjected to acute, intermittent 15-min periods of hypoxia (FiO2 0.1). Following a first hypoxia establishing hypoxic baseline values, vehicle or BMS-182874 (10 or 30 mg/kg) was administered i.v. before a second hypoxic period. In separate groups of animals, the effects of the nitric oxide synthase inhibitor N omega-nitro-L-arginine (L-NNA) in combination with BMS-182874 (10 mg) during repeated hypoxia were investigated. The ET-1-blocking properties of BMS-182874 were studied in vivo by infusion of ET-1 during normoxia and in vitro using isolated porcine pulmonary arteries. RESULTS: The hypoxia-evoked increase in mean pulmonary artery pressure was reduced by administration of BMS-182874 (10 mg/kg i.v.; from 42 +/- 8 to 34 +/- 4 mmHg, P < 0.05 and 30 mg/kg i.v.; from 38 +/- 4 to 30 +/- 5 mmHg, P < 0.05). In addition, BMS-182874 at 30 mg/kg reduced the pulmonary vascular resistance during hypoxia (from 7.4 +/- 1.5 to 5.3 +/- 1.1 mmHg.min.l-1 P < 0.05). The hemodynamic response to repeated hypoxia was reproducible in control animals and unaffected by the cyclo-oxygenase inhibitor diclophenac (3 mg/kg). Infusion of L-NNA alone resulted in an augmented pulmonary vasoconstriction during hypoxia; pulmonary arterial pressure from 35 +/- 6 to 43 +/- 9 mmHg; P < 0.05 and vascular resistance from 7.2 +/- 1.1 to 9.9 +/- 1.8 mmHg.min.l-1; P < 0.05. L-NNA in combination with BMS-182874 (10 mg/kg) resulted in a hypoxic pulmonary vasoconstriction of similar magnitude as hypoxic baseline. In addition, BMS-182874 reduced the hemodynamic response to ET-1 in normoxic pigs and competitively antagonized the vasoconstrictor effect of ET-1 in isolated porcine pulmonary arteries. CONCLUSIONS: The non-peptide, selective ETA receptor antagonist, BMS-182874, reduces hypoxic pulmonary vasoconstriction in pigs. The reduction in pulmonary vascular response to hypoxia following BMS-182874 is at least partly independent of nitric oxide.  相似文献   

7.
OBJECTIVE: To determine whether local cardiac angiotensin converting enzyme (ACE) expression is upregulated during the development of hypoxia-induced right ventricular hypertrophy. METHODS: ACE activity was measured in membrane preparations from the right ventricle and left ventricle plus septum in normoxic rats and animals exposed to chronic hypoxia for 8 and 14 days. Local cardiac ACE expression was studied by immunohistochemistry using a monoclonal antibody to ACE (9B9). RESULTS: In the normal rat heart, ACE expression was confined to vascular endothelium, the valvular endocardium, and localized regions of parietal endocardium. We found that the development of pulmonary hypertension and right ventricular hypertrophy were associated with 2.6- and 3.4-fold increases in membrane-bound right ventricular ACE activity by 8 and 14 days of hypoxia, respectively. Right ventricular ACE activity was positively correlated with the degree of right ventricular hypertrophy (r = 0.83, P < 0.001). In contrast, left ventricular plus septal ACE activity was significantly reduced by approximately 40 and 60% by 8 and 14 days of hypoxia, respectively, compared to controls. In the right ventricle of chronically hypoxic rats, immunohistochemistry demonstrated increased ACE expression in areas of myocardial fibrosis. Interestingly, increased ACE expression was noted in the right ventricular epicardium in chronically hypoxic rats. In the free wall of the left ventricle there was a significant reduction in the number of myocardial capillaries which expressed ACE in chronically hypoxic rats. CONCLUSION: Chronic hypoxia has a differential effect on left and right ventricular ACE activity and that the sites of altered ACE expression are highly localized. We speculate that locally increased right ventricular ACE activity and expression may play a role in the pathogenesis of right ventricular hypertrophy secondary to hypoxic pulmonary hypertension.  相似文献   

8.
Endotoxin decreases pulmonary vascular reactivity. Because tumor necrosis factor-alpha (TNF-alpha) is a primary mediator of endotoxemia, we tested whether TNF-alpha altered pulmonary vascular reactivity in conscious adult female rats. Osmotic pumps were implanted intraperitoneally, and low-dose TNF-alpha (62 micrograms, TNF62; n = 7), high-dose TNF-alpha (> or = 250 micrograms, TNF250; n = 5), or saline (n = 5) was administered for 2 wk. Pulmonary pressor responses to 14% O2 and angiotensin II (ANG II, 0.0206 micrograms/min for 10 min) were measured without (day 13) or after (day 14) administration of nitro-L-arginine (4.4 mg/kg iv), an inhibitor of endothelium-derived relaxing factor (EDRF). TNF-alpha administration slightly decreased (P < or = 0.08) baseline pulmonary arterial pressure in TNF250 rats and decreased (P < or = 0.05) hypoxia- and ANG II-induced constrictions in TNF62 and TNF250 rats. Whereas nitro-L-arginine potentiated (P < or = 0.05) pressure responses in control rats, it had no effect on hypoxic responses in TNF-alpha-treated rats. Nitro-L-arginine increased (P < or = 0.05) ANG II-induced vasoconstriction in TNF-alpha-treated rats, but the pulmonary arterial pressure response was still lower (P < or = 0.05) in TNF250 than in control and TNF62 rats. These results suggest that chronic TNF-alpha decreases 1) pulmonary vascular reactivity in the intact rat, 2) hypoxic pulmonary vasoconstriction by a mechanism that is independent of EDRF, and 3) ANG II-induced constriction by a mechanism that is partly EDRF dependent.  相似文献   

9.
This study examines the neonatal response to graded hypoxia and determines the arterial PO2 (PaO2) threshold for oxygen-restricted metabolism as confirmed by the development of lactic acidosis and altered oxygen handling. Anesthetized, intubated, and ventilated 3-day-old pigs (n = 56) were randomly assigned to one of five predetermined acute (120 min) graded hypoxia groups: normoxia (PaO2 = 80 Torr) or mild (60 Torr), moderate (40 Torr), moderately severe (30 Torr), or severe (20 Torr) hypoxia. In moderate hypoxia, lactate and acid-base homeostasis were unaltered due to a significant increase in oxygen extraction (P < 0.05) that was sufficient to maintain the arteriovenous oxygen content difference (oxygen uptake). In moderately severe hypoxia, increased arterial lactate and decreased HCO3- and base excess were evidence of anaerobic metabolism, yet pH was unaltered, indicating adequate buffering. In this group, despite the increase in oxygen extraction, oxygen uptake was reduced, indicating the onset of oxygen-restricted metabolism. The severe hypoxia group had significantly increased lactate (21.7 +/- 3.9 mmol/l), decreased pH (7.01 +/- 0.07) and base excess (-21.5 +/- 3.0 mmol/l), and depletion of HCO3- (9.7 +/- 1.6 mmol/l) (P < 0.0001). Here, increases in oxygen extraction were severely limited by availability, resulting in significantly reduced oxygen uptake, anaerobic metabolism, and profound lactic acidosis.  相似文献   

10.
In an attempt to understand the change of superoxide dismutase (SOD) in tumor cells by hypoxia and hypoxia-normoxia exposure, the present study performed an in vitro investigation using rat glioma cell line in culture. Hypoxia was induced by an incubation with nitrogen gas for 15 h followed the normoxia exposure with air for 30 min. Activity of SOD in cytosolic and particulate of cells was determined by the reduction of nitroblue tetrazolium. Changes of mRNA for Cu,Zn-SOD or Mn-SOD were also characterized using Northern blotting analysis. Hypoxic stress decreased the activity of SOD, both Cu,Zn-SOD and Mn-SOD, in glioma cells. Expression of mRNA for SOD was elevated by hypoxic stress and the increase of mRNA level for Cu,Zn-SOD was more marked than that for Mn-SOD. In response to hypoxia-normoxia exposure, an increase of activity with a lower mRNA level for Mn-SOD was observed in glioma cells. However, changes of Cu,Zn-SOD both the activity and the level of mRNA were not found in glioma cells by hypoxia-normoxia. The obtained results suggest that the SOD in glioma cells can be activated to compensate the damage from free radicals during hypoxic stress.  相似文献   

11.
12.
Long-lasting myocardial ischaemia reduces the density of sarcolemmal L-type calcium channels (LCC). Ischaemic preconditioning protects the myocardium against development of infarction. The aim of this study was to investigate if ischaemia-induced loss in LCC is affected by ischaemic preconditioning. Specific (+) - [3H]isradipine binding to LCC was compared in membranes and homogenates from control and ischaemic regions of non-preconditioned and ischaemically preconditioned hearts [two 10 min left anterior descending coronary artery (LAD) occlusions, each followed by 30 min reperfusion]. Biopsies were sampled after 60 min mid LAD occlusion from ischaemic and control (supplied by circumflex artery) regions. Sixty min ischaemia reduced binding density of specific (+) - [3H]isradipine in membranes by 23 +/- 11% (n = 7, P < 0.05) in the non-preconditioned group and by 20 +/- 8% (n = 6, P < 0.05) in the preconditioned group. Binding density in homogenates was reduced by 36 +/- 5% (n = 5. P < 0.05) in the non-preconditioned group and by 21 +/- 5% (n = 5. P < 0.05) in the preconditioned group. The reductions in the two groups and reductions in membranes and homogenates were not statistically different. The dissociation constant of binding was similar in the groups. In conclusion, 60 min of ischaemia reduced the binding density of (+)-[3H]isradipine in membranes and homogenates by 20-36%. The reduction in density of binding sites was not caused by redistribution of sarcolemmal LCC to an intracellular compartment. Ischaemic preconditioning did not affect the decline in binding density as hypothesized.  相似文献   

13.
The effect of prior in vivo hypoxia on the in vitro responses to changes in transmural pressure, alpha-adrenoceptor activation, and depolarization with KCl were evaluated in first-order diaphragmatic arterioles. Rats (n = 14 per group) were exposed to normoxia (controls) or to hypoxia (inspired O2 concentration = 10%) for 12 or 48 h. The arteriolar pressure-diameter relationships were recorded over a pressure range from 10 to 200 mm Hg. In separate groups of arterioles (n = 12 per group), the diaphragmatic arteriolar responses to phenylephrine (10(-8) to 10(-5 M) or KCl (10 to 100 mM) were determined after exposure to either room air or hypoxia for 48 h. In half of the arterioles studied, the endothelium was removed. After 12 h of hypoxia, the pressure-diameter relationship was normal in endothelialized arterioles but was shifted upward in de-endothelialized vessels (p < 0.05). After 48 h of hypoxia, the constrictor response to increasing transmural pressure was severely suppressed in all arterioles. The intraluminal diameters during activation with phenylephrine and KCl were larger in arterioles from rats exposed to hypoxia (103 +/- 8 and 81 +/- 7 microns, respectively) than in control arterioles (41 +/- 5 and 54 +/- 6 microns, respectively; p < 0.05 for differences). During maximum phenylephrine- and KCl-induced constriction in de-endothelialized arterioles, diameters averaged 125 +/- 8 and 105 +/- 8 microns, respectively, for arterioles from hypoxic rats and 32 +/- 6 and 40 +/- 5 microns, respectively, for arterioles from control vessels. Exposure to hypoxia results in impairment of diaphragmatic arteriolar smooth muscle reactivity and reversal of the normal inhibitory influence of the endothelium on diaphragmatic arteriolar tone.  相似文献   

14.
Heparin inhibits smooth-muscle cell (SMC) growth in vitro and inhibits the development of hypoxic pulmonary hypertension and vascular remodeling in vivo. We wondered whether preparations of heparin with different antiproliferative potency in vitro would differ in their ability to inhibit the development of hypoxic pulmonary hypertension in vivo. Two such heparins, a weakly antiproliferative lot of Elkins-Sinn (E-S) (% inhibition of SMC growth at 10 micrograms/ml = 13 +/- 9% [mean +/- SEM, n = 24]) and a more active lot from Upjohn (UJ) (% inhibition = 71 +/- 12% [n = 12, p < 0.05 versus E-S]), were infused subcutaneously (300 U.S.P. units/day; E-S 300 versus UJ 300) via an osmotic pump into guinea pigs exposed to hypoxia (10% O2) for 10 d, after which pulmonary artery pressure (PAP; mm Hg) and cardiac index (CI; ml/min/kg) were measured in room air. Hypoxic controls (HC) received saline. PAP increased from 11 +/- 1 mm Hg in normoxic controls (NC) (n = 5) to 24 +/- 1 mm Hg in HC (n = 8, p < 0.05). The PAP was lower in the E-S 300 (21 +/- 1; n = 7, p < 0.05 versus HC and NC) and even lower in the UJ 300-treated group (18 +/- 0.5; n = 7, p < 0.05 versus HC and NC). Total pulmonary vascular resistance (TPR; mm Hg/ml/min/kg) increased significantly from 0.038 +/- 0.002 in NC to 0.076 +/- 0.003 (p < 0.05) in HC. There was no difference in TPR between the HC and the E-S 300-treated group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
IGFBP-1 is elevated in fetuses with long-term, chronic hypoxia and intrauterine growth restriction. We investigated the hypothesis that hypoxia regulates IGFBP-1 in the human fetus in vivo and IGFBP-1 gene expression and protein in vitro. Umbilical artery IGFBP-1 levels (mean +/- SEM) from term babies with respiratory acidosis (acute hypoxia), normal babies, and those with mixed respiratory/metabolic acidosis (more profound and prolonged hypoxia) were measured using an immunoradiometric assay. IGFBP-1 levels were similar in normal (n = 12) and acutely hypoxic (n = 6) babies (189.1 +/- 71.8 vs. 175.8 +/- 45.9 ng /ml, respectively, P = 0.789). However, with more profound and prolonged hypoxia (n = 19), IGFBP-1 levels were markedly elevated (470.6 +/- 80.0 ng /ml, P = 0.044). To investigate IGFBP-1 regulation by hypoxia in vitro, HepG2 cells were incubated under hypoxia (pO2 = 2%) and normoxia (pO2 = 20%). IGFBP-1 protein and mRNA increased 8- and 12-fold, respectively, under hypoxic conditions. Hypoxia did not affect protein or mRNA levels of IGFBP-2 or -4. IGFBP-5 and -6 mRNAs, undetectable in control cells, were not induced by hypoxia, whereas minimally expressed IGFBP-3 mRNA increased twofold. Investigation into IGFBP-1 gene structure revealed three potential consensus sequences for the hypoxia response element (HRE) in the first intron. To investigate functionality, a 372-bp fragment of IGFBP-1 intron 1, containing putative HREs, was placed 5' to a heterologous hsp70 promoter in a plasmid using luciferase as a reporter gene. Under hypoxia, reporter gene activity increased up to 30-fold. Mutations in the middle HRE abolished reporter activity in response to hypoxia, suggesting that this HRE is functional in the IGFBP-1 hypoxia response. Cotransfection of HRE reporter genes with a constitutively expressing hypoxia-inducible factor 1 plasmid in HepG2 cells resulted in a fourfold induction of reporter activity, suggesting a role for hypoxia-inducible factor 1 in hypoxia induction of IGFBP-1 gene expression. These data support the hypothesis that hypoxia regulation of IGFBP-1 may be a mechanism operating in the human fetus to restrict insulin-like growth factor-mediated growth in utero under conditions of chronic hypoxia and limited substrate availability.  相似文献   

16.
The aim of the present study was to clarify the effects of O2 diffusion limitation resulting from hypoxic interventions on O2 uptake (V.O2) in unloaded (that is, near-zero initial force) and loaded skeletal muscle in a high-frequency stimulation. We measured V.O2, muscle venous PO2 (PvO2) and initial force in gastrocnemius-plantaris muscle in situ of anesthetized dogs: (1) during hypoxic hypoxia at 1 Hz tetanic stimulation, and (2) during hypoxia induced by the perfusion with high O2-affinity erythrocytes (having a low value of PO2 at 50% saturation of hemoglobin (P50)) at 4 Hz twitch stimulation. Averaged unloaded V.O2 during normoxia was 10.2 ml.min-1.100 g-1 at averaged blood flow of 74 ml.min-1.100 g-1 (n = 6). Hypoxic hypoxia of a decreased O2 delivery (arterial O2 concentration x flow) significantly decreased both unloaded and loaded V.O2 with a decrease in PvO2 (p<0.05). The unloaded V.O2 was reduced to 8.5 ml.min-1.100 g-1. Low P50-hypoxia decreased V.O2 at high and low initial force conditions with a decrease in PvO2 (p<0.05) at the same O2 delivery. If these decreases in V.O2 correspond with a decrease in V.O2 at zero initial force (unloaded V.O2), the unloaded V.O2 value is calculated to be 7.57 ml.min-1.100 g-1 from V. O2-initial force data. Despite the different conditions of O2 delivery, the unloaded V.O2 decreased by both hypoxia showed similar values. Thus the decreased unloaded V.O2 does not seem to be derived from only the limited O2 delivery. Some other factors such as the limitation of O2 diffusion may contribute to the decreased V.O2.  相似文献   

17.
This study tests the hypothesis that increased levels of plasma lipids can accelerate accumulation of myocardial triacylglycerols in post-ischemic but viable myocardium. Two groups of dogs underwent 90 min of left anterior descending coronary artery (LAD) occlusion followed by 240 min of reperfusion. The first group of saline-treated dogs (n = 7) had physiological levels of plasma lipids during reperfusion: a second group treated with Liposyn and heparin (n = 5) experienced increased plasma lipids during reperfusion. The transmural content of triacylglycerols was determined during ischemia and reperfusion using 1H NMR one-dimensional chemical shift imaging (1D CSI), and at the end of reperfusion using Oil Red-O staining and chemical assay. TTC staining was used to identify the extent of irreversibly injured myocardium. Subepicardial and plasma triacylglycerol content, measured both by 1D CSI and chemically, did not change during reperfusion in saline-treated dogs. Infusing dogs with Liposyn and heparin for 90 min during reperfusion transiently elevated their plasma triacylglycerols, which returned to normal levels following Liposyn wash-out. During Liposyn wash-out, myocardial triacylglycerols measured by 1D CSI preferentially increased in the subepicardium of area-at-risk myocardium (P < 0.05). Triacylglycerol content, measured chemically, also increased in area-at-risk compared to non-ischemic subepicardium (P < 0.001). Significant endocardial damage occurred in both groups, but elevated levels of plasma lipids did not increase the size of the area-at-risk. Therefore, elevated plasma lipids caused a preferential accumulation of triacylglycerols in area-at-risk myocardium during reperfusion without exacerbating irreversible ischemic injury. These results are consistent with either inhibited fatty acid oxidation or mis-matched fatty acid extraction and oxidation in area-at-risk myocardium.  相似文献   

18.
Visible light (>470 nm) irradiation of an oxygen-saturated solution of C-phycocyanin (C-PC) in the presence of the spin trap 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) gave an ESR spectrum characteristic of the DMPO-hydroxyl radical spin adduct DMPO-OH. The signal intensities of DMPO-OH adduct were enhanced by superoxide dismutase (SOD) and partly inhibited by catalase. It was partly responsible for the production of DMPO-OH that superoxide anion radical (O.-2) dismutated to generate hydrogen peroxide (H2O2) which decomposed ultimately to generate the highly reactive .OH. In addition, it can be concluded that singlet oxygen (1O2) was an important intermediate according to the strong inhibitory action of 1,4-diazabicyclo[2.2.2]octane (DABCO) and histidine on DMPO-OH formation. The experimental results suggest that photodynamic action of C-PC proceed via both type I and type II mechanisms. Furthermore, the decay kinetics of DMPO-OH adduct, the effects of DMPO and C-PC concentrations as well as irradiation time on DMPO-OH adduct formation were also discussed. Concentration of C-PC should be an important factor to influence the ESR signal intensities of DMPO-OH. Therefore, it may be concluded that reasonably lower concentration of C-PC might prolong the duration of photosensitized formation of .OH and might strengthen the photodynamic action.  相似文献   

19.
Collateral ventilation can participate in ventilation-perfusion regulation by shifting normoxic gas into hypoxic lung regions. In species lacking collateral pathways, such as cattle and swine, ventilation-perfusion balance must rely heavily on hypoxic vasoconstriction, which may explain why their muscular pulmonary arteries are much thicker than those of other animal species. The presence of these unusually muscular vessels in turn may account for the vigorous pressor response to acute hypoxia in these species. The only other species known to lack collateral ventilation is the coati. To determine whether coatis fit the pulmonary circulatory pattern of cattle and swine, we measured pulmonary arterial wall dimensions and pulmonary vascular responsiveness to acute airway hypoxia in 11 adult coatis. Hypoxia caused impressive pulmonary arterial hypertension [normoxia = 17 +/- 1 (SE) Torr, hypoxia = 40 +/- 2 Torr, cardiac output unchanged]. The medial thickness of muscular pulmonary arteries (50-300 microns) was 17.1 +/- 1.8% (SD) of external diameter, a thickness unprecedented in normotensive adult mammals. We conclude that coatis fit the pattern of other species lacking collateral ventilation, since they have thick-walled pulmonary arteries and a vigorous pressor response to hypoxia.  相似文献   

20.
Brain natriuretic peptide (BNP) is a pulmonary vasodilator that is elevated in the right heart and plasma of hypoxia-adapted rats. To test the hypothesis that BNP protects against hypoxic pulmonary hypertension, we measured right ventricular systolic pressure (RVSP), right ventricle (RV) weight-to-body weight (BW) ratio (RV/BW), and percent muscularization of peripheral pulmonary vessels (%MPPV) in rats given an intravenous infusion of BNP, atrial natriuretic peptide (ANP), or saline alone after 2 wk of normoxia or hypobaric hypoxia (0.5 atm). Hypoxia-adapted rats had higher hematocrits, RVSP, RV/BW, and %MPPV than did normoxic controls. Under normoxic conditions, BNP infusion (0.2 and 1.4 micro g/h) increased plasma BNP but had no effect on RVSP, RV/BW, or %MPPV. Under hypoxic conditions, low-rate BNP infusion (0.2 micro g/h) had no effect on plasma BNP or on severity of pulmonary hypertension. However, high-rate BNP infusion (1.4 micro g/h) increased plasma BNP (69 +/- 8 vs. 35 +/- 4 pg/ml, P < 0.05), lowered RV/BW (0.87 +/- 0.05 vs. 1.02 +/- 0.04, P < 0.05), and decreased %MPPV (60 vs. 74%, P < 0.05). There was also a trend toward lower RVSP (55 +/- 3 vs. 64 +/- 2, P = not significant). Infusion of ANP at 1.4 micro g/h increased plasma ANP in hypoxic rats (759 +/- 153 vs. 393 +/- 54 pg/ml, P < 0.05) but had no effect on RVSP, RV/BW, or %MPPV. We conclude that BNP may regulate pulmonary vascular responses to hypoxia and, at the doses used in this study, is more effective than ANP at blunting pulmonary hypertension during the first 2 wk of hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号