首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
半短程硝化-厌氧氨氧化处理污泥消化液的脱氮研究   总被引:6,自引:0,他引:6  
采用实验室规模的半短程硝化-厌氧氨氧化联合工艺,研究了对高氨氮、低ρ(C)/ρ(N)污泥消化液的处理能力.结果表明,在A/O反应器中,短程硝化在温度9~20℃、平均ρDO=5.4 mg/L、SRT值为30 d左右时,进水氨氮负荷0.64 kg/(m3.d)的条件下,经过29 d得以实现,通过控制游离氨ρFA>4 mg/L时,此后,从30—96 d,出水亚硝氮累积率维持在70%左右;短程硝化实现之后,进而实现了半短程硝化,出水氨氮与亚硝氮浓度比维持在1∶1.32左右;采用UASB反应器,接种由好氧颗粒污泥、厌氧颗粒污泥、氧化沟活性污泥及短程硝化活性污泥组成的混合污泥,在避光、厌氧、(30±0.2)℃、pH=7.3~7.9条件下,以污泥消化液经短程硝化处理后的出水为进水,初期进水氨氮、亚硝氮容积负荷分别为0.07、0.10kg/(m3.d),经过24d运行,氨氮和亚硝氮开始出现同步去除现象,195 d时总氮去除负荷达1.03 kg/(m3.d);待半短程硝化运行稳定和厌氧氨氧化反应成功启动后,将二者联立并运行了105 d,最终总氮去除率达到70%.  相似文献   

2.
采用SBR工艺以水产品加工废水为研究对象,控制进水游离氨(FA)浓度为4.61 mg/L,研究高游离氨条件下短程硝化反硝化过程,对比试验结果表明:1号反应器只控制进水游离氨浓度,在运行70 d以后,转变为全程硝化,说明单一因素控制短程硝化反硝化并不稳定;2号反应器高进水游离氨条件下,控制DO为1~2 mg/L和进水pH为8.4±0.1,亚硝酸盐积累率稳定在92%以上,现已运行130 d以上,短程硝化反硝化运行稳定,表明通过非单一因素控制可实现短程硝化反硝化稳定运行.  相似文献   

3.
为了解决垃圾渗滤液在无外加碳源的条件下难以实现高效生物脱氮的问题,采用中试规模的A/O-MBR反应器,通过实现短程硝化反硝化去除垃圾渗滤液中的高浓度有机物和氮化物,并考察反应器系统对水质变化的适应能力以及不同进水碳氮比时的去除效果.实验结果表明:在进水氨氮质量浓度为1 500 mg/L、碳氮比为2∶1、水力停留时间(HRT)为4.21 d的条件下,COD和TN去除率均达到80%以上,说明系统实现了低碳氮比垃圾渗滤液高效生物脱氮.  相似文献   

4.
碳源对晚期垃圾渗滤液短程硝化的影响   总被引:1,自引:0,他引:1  
为了考察碳源对晚期垃圾渗滤液短程硝化的影响,采用"两级UASB-缺氧-好氧系统"处理城市生活垃圾晚期渗滤液.系统进水COD质量浓度为4.3g/L左右,进水氨氮质量浓度为2.8 g/L,故COD与氨氮质量浓度之比很低,为1.5左右.首先在UASB1中实现同时反硝化与产甲烷反应,一部分COD在UASB2中进一步去除,在A/O反应器中利用残余COD进行反硝化以及NH_4~+-N的彻底硝化.试验结果表明,未投外加碳源时,原水中可降解COD几乎全部作为一级UASB的反硝化碳源被利用,A/O池缺氧段反硝化碳源不足.在A/O池的A段投加相当于1 g/L COD质量浓度的无水乙酸钠作为电子供体促进反硝化后,由于反硝化产生大量的碱度,补充了硝化所消耗的碱度,使pH值维持在一个比较合适的范围,可实现稳定的短程硝化,亚硝态氮累积率由未投加碳源时的20%提高到87%,系统出水氨氮质量浓度为0.01 g/L左右,氨氮的去除率也由未投加碳源时的92%提高到99.6%.  相似文献   

5.
生物膜法同步硝化反硝化影响因素的分析   总被引:7,自引:0,他引:7  
研究了生物膜法同步硝化反硝化系统中曝气时间、溶解氧和进水COD负荷对COD及脱氮效率的影响 .研究结果表明 :在溶解氧浓度为 1.0~ 3.0mg/L范围内 ,随着反应器内溶解氧浓度的降低 ,总脱氮去除率提高 ,保持较好脱氮率的溶解氧浓度为 2 .0mg/L左右 ;在进水COD负荷为 0 .864~ 1.44 0kg/ (m3·d)范围内 ,保持较好脱氮率的最佳有机负荷为 1.15 2kg/ (m3·d) ,降低或提高有机负荷时总脱氮率均下降  相似文献   

6.
为了解决一体化部分短程硝化、厌氧氨氧化耦合反硝化(single-stage partial nitritation, anammox and denitrification, SPNAD)系统中部分短程硝化由于过曝气难以稳定维持及短程硝化出水不稳定的问题,在以氨氮质量浓度为80 mg/L、化学需氧量(chemical oxygen demand,COD)质量浓度为150 mg/L的生活污水为进水的SPNAD系统中,通过曝气量控制进行了60 d的稳定进水负荷试验.在连续曝气控制0.3~0.5 mg/L的低溶解氧(dissolved oxygen,DO)过程中,会依次出现3次明显的DO跃变点T_a、T_b、T_c.结果表明:T_b可作为COD的降解完成指示点,T_c可作为部分短程硝化停曝气的指示点,T_c时刻NH■-N、NO■-N平均质量浓度分别为20.11、22.83 mg/L,NO■-N和NH■-N的质量浓度比值为0.93~1.37,适宜作为厌氧氨氧化进水;以DO变化率Δρ(DO)/Δt≥0.04 mg/(L·min)作为渐减曝气量和停止曝气量的设定值;将该梯度递减曝气控制策略应用于以实际生活污水(NH■-N质量浓度为41.4~75.5 mg/L)为进水的SPNAD系统中,稳定实现了平均96.7%的总氮去除率(nitrogen removal ratio,NRR),平均出水总氮(total nitrogen,TN)质量浓度为2.11 mg/L.通过近150 d的试验为SPNAD系统的稳定短程硝化的稳定维持提出了一种梯度递减曝气控制策略,应用该控制策略可灵活调节本系统适应低氨氮、低ρ(COD)/ρ(TN)城市生活污水的水质变化且出水远优于国家一级A排放标准.  相似文献   

7.
氨氮对内循环生物流化床亚硝化过程影响   总被引:2,自引:0,他引:2  
为实现内循环生物流化床(ITFB)短程脱氮处理高氨氮废水,在小试ITFB反应器内考察了氨氮浓度对生物膜亚硝化特性的影响.通过5个月的连续试验,研究了ITFB反应器历经启动培养、短暂亚硝化、硝化系统破坏、硝化系统恢复、完全硝化五个过程中,氨氮、硝酸盐氮和亚硝酸盐氮的转化规律及游离氨毒性作用对短程硝化过程的影响.试验结果表明:反应器启动初期出现了短暂亚硝化,平均亚硝化率为79%;在进水氨氮浓度增加到300 mg/L时,系统再次实现了亚硝化,平均亚硝化率达81%,但由于游离氨浓度的影响使得系统硝化能力受到严重影响,系统氨氮去除率降低至22%;系统恢复后,亚硝化现象不明显.反应器内游离氨浓度随进水氨氮浓度升高而增加至8 mg/L时,系统内硝化细菌和亚硝化细菌活性均受到抑制.通过提高进水氨氮浓度来实现系统短程脱氮过程稳定运行的可逆性较差.  相似文献   

8.
目的 解决对短程硝化过程影响因素pH值研究不充分及短程硝化过程中氮的缺失的问题.方法 在SBR反应器中用传统活性污泥作为种泥驯化污泥,以模拟生活污水为处理对象进行动态实验,考察pH值对系统短程硝化反硝化的影响及系统运行周期内总氮缺失原因.结果 pH=8.5,6 h的氨氮转化速率为8.9 mg/(L·h),亚硝态氮积累率高达93%;亚硝酸盐氮积累率随反应时间逐渐降低,pH越低,下降越多,pH=7.1时,从2 h的80%下降到6 h的75%;进水pH值越高,反硝化2 h时总氮的去除效率越高,pH=8.5时,系统总氮的降解速率达到5.6 mg/(L·h);短程硝化过程中存在氮的缺失现象.结论 进水pH越高,氨氮降解速率、亚硝态氮积累率和总氮去除率越高,系统周期中氮的缺失主要是同步硝化反硝化作用的结果.  相似文献   

9.
为处理含有硫化物和有机物的废水,应用兼养脱硫反硝化缺氧附着生长反应器,并引入硝酸盐和亚硝酸盐作为电子受体.进水硫化物和有机物质量浓度分别为200 mg/L和20 mg/L,去除率分别达到99.9%和89.2%.在化学氧化和微生物氧化的共同作用下,硫化物转化为硫酸盐的比例为40%.反应器内自养反硝化与异养反硝化同时发生,异养反硝化的比例为21.76%.同时,针对亚硝酸盐负荷、亚硝酸盐与硝酸盐比例、氨氮负荷等含氮化合物参数对兼养脱硫反硝化的影响进行研究.结果表明:当NO2-负荷为50 mg/(L.d)、亚硝酸盐与硝酸盐的比为2、NH4+负荷为50 mg/(L.d)时,脱氮除硫的效果较好.  相似文献   

10.
生物膜同步硝化反硝化脱氮过程中N2O的产生量及机理分析   总被引:2,自引:0,他引:2  
为了考察生物膜同步硝化反硝化脱氮过程中氧化亚氮(N2O)的释放量,以碳纤维为填料,采用SBR反应器研究了实际生活污水生物膜同步硝化反硝化过程中N2O释放量并对其产生机理进行了分析.在低溶解氧水平(0.2~1.5 mg/L)下系统同步硝化反硝化率维持在79%以上.在4个溶解氧水平0.2、0.4、1.0、1.5 mg/L下,每去除1 g氨氮N2O释放量分别为0.005、0.025、0.021、0.025 g,远低于短程硝化反硝化系统N2O释放量.1个反应周期内,N2O释放量随NH4+-N氧化而增加,NH4+-N氧化结束后,N2O释放量急剧减少.在曝气状态下,N2O释放速率与ρ(COD)呈现了较好的相关性.分析发现,生物膜同步硝化反硝化系统中N2O主要是由异养硝化和好氧反硝化产生.  相似文献   

11.
NaCl盐度对活性污泥系统脱氮性能的影响   总被引:8,自引:0,他引:8  
以实际含盐生活污水为处理对象,考察了不同盐度对生物脱氮性能和主导菌群的影响.采用3个平行的序批式生物处理工艺(SBR)在进水(0.17 h)/好氧(7 h)/缺氧(3 h)/沉淀(1.5 h)/排水时间(0.33 h)的运行方式下,在5,7.5,10g/L的盐度下稳定运行50 d左右.结果表明,NaCl盐度对硝化菌的抑制作用远大于反硝化菌,盐度对亚硝酸盐氧化菌群(nitrite oxidation bacteria,简称为NOB)比对氨氧化菌群(ammonia oxidation bacteria,简称为AOB)有更强的抑制作用;7.5和10 g/L系统可以在较短的时间内实现短程硝化反硝化,亚硝酸盐积累率均维持在95%以上.随着盐度的升高,3个系统稳定后的比氨氧化速率逐渐下降;5和7.5 g/L盐度的SBR系统稳定后有较高的氨氮去除率.7.5 g/L盐度可作为普通活性污泥系统实现短程硝化的理想盐度.  相似文献   

12.
以某实际合成氨化工厂废水为研究对象,进行高氨氮化工废水缺氧/好氧(A/O)工艺高效短程生物脱氮中试研究.试验结果表明:A/O系统经过90 d的运行,实现了稳定的短程硝化,并获得了稳定的有机物和氮去除.亚硝态氮积累率维持在80%以上,COD、NH4+-N和TN的去除率分别达到了95%、99%和80%.此外,机理分析表明,A/O中试系统获得稳定短程硝化的主要因素为较低ρ(DO)、较高ρ(FA)及适宜HRT三者的协同调控.  相似文献   

13.
采用序批式生物反应器(SBR)处理模拟含盐废水,利用醋酸钠作为碳源,当DO为0.3-0.5 mg/L、温度为35±1℃、pH为7.5-8.5时,考察NaCl和KCl两种盐度对SBR工艺氨氮去除效果的影响。结果表明,当SBR反应器中无盐度添加的废水时,通过30 d的驯化,活性污泥系统氨氮去除率稳定在90%以上;SBR反应器中添加NaCl和KCl含盐废水,当NaCl盐度增加至15 g/L时,出水氨氮高于10mg/L;当KCl盐度增加至20 g/L时,出水氨氮低于5 mg/L。当NaCl盐度为10 g/L时,SBR反应器达到90%以上的氨氮去除率所需的驯化时间为3 d,相同KCl盐度下SBR反应器达到90%以上的氨氮去除率需要2 d的驯化时间。  相似文献   

14.
为提高反应器的氮素去除率,在市政污水处理厂进行同步厌氧氨氧化反硝化(SAD)工艺小试.以A/O除磷和亚硝化工艺处理后的生活污水为基质,启动厌氧氨氧化滤柱.反应器启动成功后,基质中投加有机碳源促进反硝化菌生长,启动SAD工艺,研究碳源质量浓度对SAD工艺的影响.由于葡萄糖对厌氧氨氧化菌抑制作用较小,成本较低,作为SAD工艺的有机碳源.结果表明:常温条件下,进水分别投加10,20和30 mg/L Glu,SAD工艺耦合效果良好,平均出水总氮质量浓度为9. 16,8. 10和6. 41 mg/L.相较于厌氧氨氧化工艺,SAD工艺出水总氮质量浓度降低了16%~42%,常温条件下取得了良好的运行效果.冬季水温为10~12℃,基质中投加30 mg/L Glu,SAD工艺稳定性受到破坏并向反硝化工艺转变,出水氨氮质量浓度由0. 5 mg/L增长至6. 2 mg/L.水温对SAD工艺有较大影响,低温条件下SAD工艺中厌氧氨氧化菌与反硝化菌的竞争中占据劣势,工艺稳定性受到破坏.将基质Glu质量浓度降低到20 mg/L,出水总氮质量浓度为6. 5~8. 5 mg/L,冬季SAD工艺出水氨氮和总氮质量浓度满足北京市地方标准的A类排放标准.  相似文献   

15.
亚硝酸型硝化在生物陶粒反应器中的实现   总被引:2,自引:0,他引:2  
为确定低氨氮污水处理过程中的亚硝酸型硝化的特性,采用生物陶粒反应器对其亚硝化效果和稳定性进行研究.试验结果表明,在水温20~25℃,水力负荷0.6 m3/(m2.h),气水比(3~5)∶1,进水COD负荷106~316 mg/L,氨氮负荷42.78~73.62 mg/L的条件下,反应器对氨氮的平均去除率可达到81.32%,且亚硝酸氮积累率基本稳定地保持在91%~99%.结合反应器中氮元素沿程变化分析及反应器内生物膜中微生物的计数结果表明,通过控制低溶解氧,实现了在常温条件下稳定的亚硝酸盐积累.  相似文献   

16.
Pilot-scale studies on biological treatment of hypersaline wastewater at low temperature were conducted and results showed that seawater salinity had a strong negative effect on notrouomonas and nitrobaeter growth, but much more on the nitrobaeter. The nitrification action was mainly accomplished by nitrosomonas. Bench-scale experiments using two SBRs were carried out for further investigation under different conditions of salinities, ammonia loadings and temperatures. Biological nitrogen removal via nitrite pathway from wastewater containing 30 percent seawater was achieved, but the ammonia removal efficiency was strongly related not only to the influent ammonia loading at different salinities but also to temperatures. When the ratio of seawater to wastewater was 30 percent, and the ammonia loading was below the critical value of 0. 15 kgNH4 ^+ -N/( kgMLSS · d) , the ammonia removal efficiency via nitrite pathway was above 90 %. The critical level of ammonia loading was 0. 15, 0. 08 and 0. 03 kgNH4 ^+ -N/( kgMLSS · d) respectively at different temperatures of 30℃, 25℃ and 20℃ when the influent ammonia concentration was 60 - 80 mg/L and pH was 7.5 - 8.0.  相似文献   

17.
目的研究人工构建的高效耐盐脱氮复合菌剂在不同条件下的生长情况和脱氮效果,为优化培养条件、提高高盐废水的脱氮效率和处理实际废水提供运行参数.方法在转速125r/min的恒温振荡培养箱中,按6%接种复合菌剂,控制初始氨氮质量浓度100mg/L,进行36h静态脱氮试验.结果耐盐脱氮复合菌剂的脱氮最适m(C):m(N)为15,最适氯化钠质量分数为3%,pH为7,温度为30℃.耐盐脱氮复合菌剂在氯化钠质量分数为3%~7%均能获得良好的生长和脱氮性能,脱氮率达到99.02%,反应末氨氮质量浓度低于1mg/L.结论耐盐脱氮复合菌剂具有一定耐盐性,脱氮过程中无硝态氮和亚硝态氮积累,可实现同步硝化反硝化,能提高高盐废水生物处理脱氮效率.  相似文献   

18.
The tetrazolium salt 2-(4-Iodophenyl) -3-( 4-nitrophenyl ) -5-phenyltetrazolium chloride (INT) was used as a tool fi)r estimating the activity of the electron transport system (ETS) in activated sludge in a 40 L sequencing batch reactor (SBR) and domestie sewage as the organic substrate. The activity of INT-ETS during one SBR cycle, and the effeet of the ammonia concentration and the concentration of organic matter influent on the INT-ETS activity were investigated. The results show that: the use of INT is reliable in estimating of biological activity of activated sludge of SBR system; Biological activity of organic matter biodegradation, nitrification and denitrification process in SBR system reduce orderly. Obviously, INT-ETS activity reduces from 232.59 rny/(g · h) to 190. 65 rag/( g ·h) at first and then decreases to 113.88 my/( g · h) when influent concentration of COD and NH4+-N is 300 my/L and 40 mg/L respectively. In addition, various influent Nitrogen (NH4+-N are 14.5 mg/L and 42.0 my/L) and organic shock loading (COD are 293 mg/L and 685 my/L) experimenntions cure prove that operational conditions have no obvious effect on INT-ETS variation rule. However, the time of the appearance of feature points marking different reaction phase is influenced.  相似文献   

19.
高浓度氨氮废水自养半短程硝化试验   总被引:1,自引:0,他引:1  
在SBR反应器中采用消化污泥驯化启动自养半短程硝化系统。在温度35±1℃,溶解氧浓度(DO)1.0~1.5mg/L的条件下,可实现反应器的短程硝化。试验结果表明:反应器进水NH3-N浓度为510mg/L、HRT=12h、DO=0.8~1.2mg/L、pH=7.5~8.3时,SBR反应器出水NO2^--N和NH3-N的平均浓度分别为253.7和246.9mg/L,P(NO2^--N)/p(NH3-N)为1.02,满足ANAMMOX反应器的进水要求。  相似文献   

20.
A/O脱氮工艺影响因素及其控制策略的研究   总被引:13,自引:0,他引:13  
为有效提高A/O工艺脱氮效率,以淀粉废水为研究对象,系统考察了DO、硝化液回流量、污泥回流量、SRT、进水COD与TN质量质量浓度比和HRT等因素对脱氮效率的影响,并建立了相应的控制策略,如以出水氨氮质量浓度来控制好氧区DO值,以缺氧区硝酸氮质量浓度来控制内循环回流量,以进水COD与TN质量质量浓度比或出水总氮质量浓度来控制外碳源投量,最后根据上述分析建立了A/O工艺硝化与反硝化反应专家控制系统。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号