首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
Composite NaNH2-NaBH4 (molar ratio of 2/1) hydrogen storage materials are prepared by a ball milling method with various ball milling times. The compositions and hydrogen generation characteristics are investigated by means of X-ray diffraction (XRD) and thermo gravimetric-differential thermal analysis (TG-DTA). The structural characteristics imply that ball milling produces a new phase of Na3(NH2)2BH4, and mechanical energy accumulated in the ball milling process may be responsible for the phase change of Na3(NH2)2BH4. TG-DTA demonstrates that the phase change temperature of the composite NaNH2-NaBH4 (2/1) ball milled for 16 h is 141.8 °C, and the melting point is 197.3 °C; below 400 °C, composite hydrogen storage material is mainly decomposed to give hydrogen and Na3BN2; while above 400 °C, the previous by-product Na3BN2 continues to decompose so as to give metal Na gradually.  相似文献   

2.
The composites of (NaBH4+2Mg(OH)2) and (LiBH4+2Mg(OH)2) without and with nanometric Ni (n-Ni) added as a potential catalyst were synthesized by high energy ball milling. The ball milled NaBH4-based composite desorbs hydrogen in one exothermic reaction in contrast to its LiBH4-based counterpart which dehydrogenates in two reactions: an exothermic and endothermic. The NaBH4-based composite starts desorbing hydrogen at 240 °C. Its ball milled LiBH4-based counterpart starts desorbing at 200 °C. The latter initially desorbs hydrogen rapidly but then the rate of desorption suddenly decelerates. The estimated apparent activation energy for the NaBH4-based composite without and with n-Ni is equal to 152 ± 2.2 and 157 ± 0.9 kJ/mol, respectively. In contrast, the apparent activation energy for the initial rapid dehydrogenation for the LiBH4-based composite is very low being equal to 47 ± 2 and 38 ± 9 kJ/mol for the composite without and with the n-Ni additive, respectively. XRD phase studies after volumetric isothermal dehydrogenation tests show the presence of NaBO2 and MgO for the NaBH4-based composite. For the LiBH4-based composite phases such as MgO, Li3BO3, MgB2, MgB6 are the products of the first exothermic reaction which has a theoretical H2 capacity of 8.1 wt.%. However, for reasons which are not quite clear, the first reaction never goes to full completion even at 300 °C desorbing ∼4.5 wt.% H2 at this temperature. The products of the second endothermic reaction for the LiBH4-based composite are MgO, MgB6, B and LiMgBO3 and the reaction has a theoretical H2 capacity of 2.26 wt.%. The effect of the addition of 5 wt.% nanometric Ni on the dehydrogenation behavior of both the NaBH4-and LiBH4-based composites is rather negligible. The n-Ni additive may not be the optimal catalyst for these hydride composite systems although more tests are required since only one n-Ni content was examined.  相似文献   

3.
In situ Raman spectroscopy was used to monitor the dehydrogenation of ball-milled mixtures of LiNH2–LiBH4–MgH2 nanoparticles. The as-milled powders were found to contain a mixture of Li4BN3H10 and Mg(NH2)2, with no evidence of residual LiNH2 or LiBH4. It was observed that the dehydrogenation of both of Li4BN3H10 and Mg(NH2)2 begins at 353 K. The Mg(NH2)2 was completely consumed by 415 K, while Li4BN3H10 persisted and continued to release hydrogen up to 453 K. At higher temperatures Li4BN3H10 melts and reacts with MgH2 to form Li2Mg(NH)2 and hydrogen gas. Cycling studies of the ball-milled mixture at 423 K and 8 MPa (80 bar) found that during rehydrogenation of Li4BN3H10 Raman spectral modes reappear, indicating partial reversal of the Li4BN3H10 to Li2Mg(NH)2 transformation.  相似文献   

4.
A one-to-one molar ratio of LiNH2 to MgH2 was ball milled and characterized to evaluate the proposed hydrogen storage reaction: LiNH2 + MgH2 ⇔ LiMgN + 2H2. The pressure–composition isotherm shows that less than 3.4 wt.% H2 is released at a plateau pressure near 20 atm at 210 °C. Furthermore, X-ray diffraction show that the products of the reaction include Li2Mg2(NH)3 rather than LiMgN. Combined thermogravimetric and residual gas analyses reveal that large quantities of ammonia are released from the system.  相似文献   

5.
Structural changes of bare and AlPO4-coated LixCoO2 with a coating thickness of 20 and 200 nm are investigated at x = 0.24 and 0.1 after thermal annealing at 200, 300, and 400 °C using XRD and Co K-edge XANES (X-ray absorption near-edge structure) and EXAFS (extended X-ray absorption fine structure). Both the bare and coated cathodes exhibit faster phase transformation into spinel phases at lower annealing temperatures as x in LixCoO2 is decreased. Bare LixCoO2 cathodes exhibit phase transitions from LixCo2O4 to Co3O4 spinel as the annealing temperature is increased and the x is value decreased, which suggests a possible reaction according to (1/2)LixCo2O4 → xLi2CO3 + (1/3)Co3O4 + (2/3)O2. However, the coated cathodes sustain a LixCo2O4 phase even at 400 °C and x = 0.1. This indicates that the AlPO4 coating layer suppresses the LixCo2O4 phase decomposition into Co3O4.  相似文献   

6.
This article describes in situ heating and observation of a LiNH2–2LiH mixture in an environmental scanning electron microscope (ESEM). The LiNH2–2LiH mixture showed extensive morphological changes with heating and attendant hydrogen desorption. Static images and real-time movies were obtained during the dehydrogenation process. H2 evolution commences at ∼150 °C (LiNH2 + 2LiH → Li2NH + H2 + LiH), and continues until ∼410 °C. Dramatic morphological changes are observed at 220 and 410 °C (Li2NH + LiH → Li3N + H2). The material converts to a microcrystalline phase at higher temperatures (>500 °C). The observed H2 desorption and morphological changes occur at temperatures in good agreement with those measured by complementary analytical methods. This is the first time the major structural and morphological changes attendant on H2 loss from this system have been observed in situ and in real time.  相似文献   

7.
The reaction pathway and rate-limiting step of dehydrogenation of the LiNH2 + LiH mixture have been investigated. The study reveals that dehydrogenation of the LiNH2 + LiH mixture is diffusion-controlled and the rate-limiting step is NH3 diffusion through the Li2NH product layer outside the LiNH2 shrinking core. This phenomenon is explained based on a model describing the major steps of the dehydriding reaction of the mixture, and related to the evidence obtained from X-ray diffraction and specific surface area measurements of the mixture before and after isothermal hydrogen uptake/release cycles at high homologous temperatures.  相似文献   

8.
In this work, the hydriding–dehydriding properties of the LiBH4–NbF5 mixtures were investigated. It was found that the dehydrogenation and reversibility properties of LiBH4 were significantly improved by NbF5. Temperature-programed dehydrogenation (TPD) showed that 5LiBH4–NbF5 sample started releasing hydrogen from as low as 60 °C, and 4 wt.% hydrogen could be obtained below 255 °C. Meanwhile, ∼7 wt.% H2 could be reached at 400 °C in 20LiBH4–NbF5 sample, whereas pristine LiBH4 only released ∼0.7 wt.% H2. In addition, reversibility measurement demonstrated that over 4.4 wt.% H2 could still be released even during the fifth dehydrogenation in 20LiBH4–NbF5 sample. The experimental results suggested that a new borohydride possibly formed during ball milling the LiBH4–NbF5 mixtures might be the source of the active effect of NbF5 on LiBH4.  相似文献   

9.
Remarkable improvement of hydrogen sorption properties of Li–N–H system has been obtained by doping with a small amount of LiBH4. The starting and ending temperatures of hydrogen desorption shift to lower temperatures and the release of NH3 is obviously restrained by 10 mol% LiBH4 doping. The kinetics of hydrogen desorption and absorption of Li–N–H system became faster by the addition of LiBH4. About 4 wt.% H2 can be released within 30 min and ∼4.8 wt.% H2 can be reabsorbed within 2 min by LiBH4 doped sample at 250 °C, while only 1.44 wt.% H2 is released and 2.1 wt.% is reabsorbed for pure Li–N–H system. The quaternary hydride (LiNH2)x(LiBH4)(1−x) formed by the reaction between LiBH4 and LiNH2 may contribute to the enhancement of the hydrogen sorption performances by yielding a ionic liquid phase and transferring LiNH2 from solid state to molten state with a weakened N–H bond.  相似文献   

10.
The hydrogen storage properties and mechanisms of the Ca(BH4)2-added 2LiNH2–MgH2 system were systematically investigated. The results showed that the addition of Ca(BH4)2 pronouncedly improved hydrogen storage properties of the 2LiNH2–MgH2 system. The onset temperature for dehydrogenation of the 2LiNH2–MgH2–0.3Ca(BH4)2 sample is only 80 °C, a ca. 40 °C decline with respect to the pristine sample. Further hydrogenation examination indicated that the dehydrogenated 2LiNH2–MgH2–0.1Ca(BH4)2 sample could absorb ca. 4.7 wt% of hydrogen at 160 °C and 100 atm while only 0.8 wt% of hydrogen was recharged into the dehydrogenated pristine sample under the same conditions. Structural analyses revealed that during ball milling, a metathesis reaction between Ca(BH4)2 and LiNH2 firstly occurred to convert to Ca(NH2)2 and LiBH4, and then, the newly developed LiBH4 reacted with LiNH2 to form Li4(BH4)(NH2)3. Upon heating, the in situ formed Ca(NH2)2 and Li4(BH4)(NH2)3 work together to significantly decrease the operating temperatures for hydrogen storage in the Ca(BH4)2-added 2LiNH2–MgH2 system.  相似文献   

11.
Hydrogen release from hydrolysis of LiNH2BH3, NaNH2BH3, LiH–NH3BH3 and NaH–NH3BH3 respectively was investigated in this paper. It is shown experimentally that LiNH2BH3 and NaNH2BH3 hydrolysis can release 3 equiv. of hydrogen at 25 °C. Hydrolysis of LiNH2BH3 or NaNH2BH3 exhibits greatly improved kinetics in comparison with neat NH3BH3 hydrolysis. The electronic and structural changes from NH3BH3 to [NH2BH3] play a crucial role in the improvements. The mechanism of LiNH2BH3 and NaNH2BH3 hydrolysis is the combination of H+ and OH ions of water with the polar ions of LiNH2BH3 and NaNH2BH3. The process of LiH–NH3BH3 and NaH–NH3BH3 hydrolysis comprises two steps: LiH or NaH first reacts with water and then the generated heat initiates thermohydrolysis of NH3BH3. LiH or NaH hydrolysis is prior to the reaction of LiH or NaH with NH3BH3. Our results show a novel strategy to promote hydrogen release kinetics of LiNH2BH3 and NaNH2BH3. Furthermore, our results also present a novel noncatalytic method for hydrogen release from NH3BH3 by co-hydrolyzing it with other highly exothermic hydrides.  相似文献   

12.
In this study, various nanoscale metal oxide catalysts, such as CeO2, TiO2, Fe2O3, Co3O4, and SiO2, were added to the LiBH4/2LiNH2/MgH2 system by using high-energy ball milling. Temperature programmed desorption and MS results showed that the Li–Mg–B–N–H/oxide mixtures were able to dehydrogenate at much lower temperatures. The order of the catalytic effect of the studied oxides was Fe2O3 > Co3O4 > CeO2 > TiO2 > SiO2. The onset dehydrogenation temperature was below 70 °C for the samples doped with Fe2O3 and Co3O4 with 10 wt.%. More than 5.4 wt.% hydrogen was released at 140 °C. X-ray diffraction indicated that the addition of metal oxides inhibited the formation of Mg(NH2)2 during ball milling processes. It is thought that the changing of the ball milling products results from the interaction of oxide ions in metal oxide catalysts with hydrogen atoms in MgH2. The catalytic effect depends on the activation capability of oxygen species in metal oxides on hydrogen atoms in hydrides.  相似文献   

13.
Thermochemical reactions between alkali metal amides and magnesium hydride taken in 2:3 molar ratios have been investigated using pressure-composition-temperature, X-ray powder diffraction and residual gas analysis measurements. The thermally induced reactions in both title systems are stoichiometric and proceed as a following solid state transformation: 2MNH2 + 3MgH2 → Mg3N2 + 2MH + 4H2↑. A total of 6.45 wt.% of hydrogen is released by the 2LiNH2–3MgH2 system beginning at 186 °C, and a total of 5.1 wt.% H2 is released by the 2NaNH2–3MgH2 system starting at 130 °C. Combined structure/property investigations revealed that the transformation in the lithium containing system proceeds in two steps. In the first step, lithium amide reacts with MgH2 to form Li2Mg(NH)2 and hydrogen. In the second step, reaction between Li2Mg(NH) and MgH2 leads to the formation of the Mg3N2 nitride, lithium hydride and additional gaseous hydrogen. The transformation in the sodium containing system appears to proceed through a series of competing solid state processes with formation of Mg(NH2)2 and NaMgH3 intermediates. Partial rehydrogenation in 190 bar hydrogen pressure leading to formation of the MgNH imide was observed in the dehydrogenated 2NaNH2–3MgH2 system at 395 °C.  相似文献   

14.
We report the synthesis of a new hydrogen storage material with a composition of LiCa(NH2)3(BH3)2. The theoretical hydrogen capacity of LiCa(NH2)3(BH3)2 is 9.85 wt.%. It can be prepared by ball milling the mixture of calcium amidoborane (Ca(NH2BH3)2) and lithium amide (LiNH2) in a molar ratio of 1:1. The experimental results show that this material starts to release hydrogen at a temperature as low as ca. 50 °C, which is ca. 70 °C lower than that of pure Ca(NH2BH3)2 possibly resulting from the active interaction of NH2 in LiNH2 with BH3 in Ca(NH2BH3)2. ca. 4.1 equiv. or 6.8 wt.% hydrogen can be released at 300 °C. The dehydrogenation is a mildly exothermic process forming stable nitride products.  相似文献   

15.
In the present study, the synthesis of two different LiBH4–Y(BH4)3 and LiBH4–YH3 composites was performed by mechanochemical processing of the 4LiBH4–YCl3 mixture and as-milled 4LiBH4–YCl3 plus 3LiH. It was found that Y(BH4)3 and YH3 formed in situ during milling are effective to promote LiBH4 destabilization but differ substantially from each other in terms of the dehydrogenation pathway. During LiBH4–Y(BH4)3 dehydriding, Y(BH4)3 decomposes first generating in situ freshly YH3 and subsequently, it destabilizes LiBH4 with the formation of minor amounts of YB4. About 20% of the theoretical hydrogen storage was obtained via the rehydriding of YB4–4LiH–3LiCl at 400 °C and 6.5 MPa. As a novel result, a compound containing (B12H12)2− group was identified during dehydriding of Y(BH4)3. In the case of 4LiBH4–YH3 dehydrogenation, the increase of the hydrogen back pressure favors the formation of crystalline YB4, whereas a reduction to ≤0.1 MPa induces the formation of minor amounts of Li2B12H12. Although for hydrogen pressures ≤0.1 MPa direct LiBH4 decomposition can occur, the main dehydriding pathway of 4LiBH4–YH3 composite yields YB4 and LiH. The nanostructured composite obtained by mechanochemical processing gives good hydrogen storage reversibility (about 80%) regardless of the hydrogen back pressure.  相似文献   

16.
A reactive composite of Mg(BH4)2⋅6NH3-xLiH is prepared, and the effects of the LiH content on the dehydrogenation/hydrogenation properties of the material are investigated. The results show that the presence of LiH with x = 3 reduces the onset dehydrogenation temperature of Mg(BH4)2⋅6NH3 from 130 °C to 80 °C in TPD mode. Approximately 14.3 wt% hydrogen is released from the Mg(BH4)2⋅6NH3-6LiH composite with distinctly reduced ammonia evolution while heating to 340 °C. Upon heating, Mg(BH4)2⋅6NH3 first reacts with LiH to form Mg(NH2)2, Li3BN2H8 and LiBH4 with the release of H2 and the evolution of a minor amount of NH3. The newly formed Mg(NH2)2 then reacts with LiH to produce H2 and Li2Mg(NH)2. Further elevating the operating temperature induces chemical reactions between Li2Mg(NH)2, LiBH4 and Li3BN2H8, causing the release of additional H2 and production of Li3BN2, LiMgBN2 and LiH. The dehydrogenated sample at 210 °C absorbs 2.2 wt% of hydrogen, exhibiting partial reversibility for hydrogen storage.  相似文献   

17.
First-principle density functional theory calculations were used to investigate the electronic structure and mechanism of the LiH + NH3 → LiNH2 + H2 reaction. Along the reaction pathway, intermediate complexes HLi…NH3 and LiNH2…H2 and a transition state can be found. The N-2p electron in the highest occupied molecular orbital (HOMO) of NH3 transfers to the Li-2s orbital in lowest unoccupied molecular orbital (LUMO) of LiH and forms the initial state HLi…NH3. In the transition state, H1 of LiH and H2 of NH3 turn toward each other, resulting in the formation of a H2 bond. From the transition state to the final state, the geometric configuration changes from Cs to C2v, and the improvement of geometric configuration symmetry results in a decrease in the energy gap between HOMO and LUMO. The LiH + NH3 → LiNH2 + H2 reaction is exothermic.  相似文献   

18.
In situ two-dimensional synchrotron X-ray powder diffraction investigation combined with Rietveld method data analysis were performed in order to yield a complete and quantitative phases structure evolution of the polycrystalline mixture 2LiNH2 + KBH4 + LiH during H2 desorption. While a first-principles, purely thermodynamics approach of the system predicted a single dehydrogenation step reaction at relatively low temperatures, it is assessed experimentally that the reaction occurs in two steps with first the formation of Li2NH at ca. 230 °C due to the reaction between LiNH2 and LiH plus hydrogen and ammonia evolution, followed by an additional reaction of the resulting phases with KBH4 at 360 °C, which releases hydrogen and leads to the formation of the monoclinic and tetragonal Li3BN2 polymorphs. Besides pointing out possible limits of a purely thermodynamics approach inevitably relying exact knowledge of experimental quantities, it is concluded that before assuming it viable for on-board vehicle use, additional stoichiometries may be worth of investigation in order to assess any existence of lower hydrogen desorption temperature of such system.  相似文献   

19.
Doping Mg(NH2)2–2LiH by Mg2(BH4)2(NH2)2 compound exhibits enhanced hydrogen de/re-hydrogenation performance. The peak width in temperature-programmed desorption (TPD) profile for the Mg(NH2)2–2LiH–0.1Mg2(BH4)2(NH2)2 was remarkably shrunk by 60 °C from that of pristine Mg(NH2)2–2LiH, and the peak temperature was lowered by 12 °C from the latter. Its isothermal dehydrogenation rate was greatly improved by five times from the latter at 200 °C. XRD, FTIR and NMR analyses revealed that a series of reactions occurred in the dehydrogenation of the composite. The prior interaction between LiH and Mg–B–N–H yielded intermediate LiBH4, which subsequently reacted with Mg(NH2)2 and LiH in molar ratio of 1:6:9 to form Li2Mg2(NH)3 and Li4BN3H10 phases. The observed 6Mg(NH2)2–9LiH–LiBH4 combination dominated the hydrogen release and soak in the composite system, and enhanced the kinetics of the system.  相似文献   

20.
The structure of (NH4)2B10H10 (1) was determined through powder XRD analysis. The thermal decomposition of 1 and (NH4)2B12H12 (2) was examined between 20 and 1000 °C using STMBMS methods. Between 200 and 400 °C a mixture of NH3 and H2 evolves from both compounds; above 400 °C only H2 evolves. The dihydrogen bonding interaction in 1 is much stronger than that in 2. The stronger dihydrogen bond in 1 resulted in a significant reduction by up to 60 °C, but with a corresponding 25% decrease in the yield of H2 in the lower temperature region and a doubling of the yield of NH3. The decomposition of 1 follows a lower temperature exothermic reaction pathway that yields substantially more NH3 than the higher temperature endothermic pathway of 2. Heating of 1 at 250 °C resulted in partial conversion of B10H102− to B12H122−. Both 1 and 2 form an insoluble polymeric material after decomposition. The elements of the reaction network that control the release of H2 from the B10H102− can be altered by conducting the experiment under conditions in which pressures of NH3 and H2 are either near, or away from, their equilibrium values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号