首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
通过在Y-TZP中加入适量的硅酸盐玻璃添加剂,使其烧结温度明显降低,并且制备出具有细晶粒、高强度的四方相氧化锆增韧陶瓷材料.分析了添加剂含量及烧结温度与材料致密度、显微结构及力学性能的关系,发现在Y-TZP材料中加入1wt%的添加剂,可以使材料在1400℃下烧结,氧化锆晶粒尺寸约为100~200nm;其抗折强度可达950MPa.  相似文献   

2.
利用热压烧结方法原位合成了TiB2-TiC0.8-SiC复相陶瓷。通过光学显微镜(OM)、X射线衍射分析仪(XRD)和扫描电子显微镜(SEM)对材料物相组成和微观结构进行表征。研究了热压条件下烧结温度对材料物相组成、结构及力学性能的影响。结果表明:烧结温度在1700-1950℃范围内,随着温度的升高,材料的致密度、抗弯强度和断裂韧性都有显著改善。烧结温度为1900℃可得到完全致密的原位合成TiB2-TiC0.8-SiC复相陶瓷,材料的晶粒发育比较完善,条状TiB2和块状TiC0.8晶粒清晰可见。复合材料的维氏硬度、断裂韧性和弯曲强度分别达到23.6 GPa,(7.0±1.0)MPa.m1/2和470.9 MPa。当温度达到1950℃时,由于增强相TiB2晶粒长大,材料的强度降低。TiB2、TiC0.8与SiC颗粒协同,通过裂纹偏转、晶粒拔出、晶粒细化等机制对复合材料起到颗粒增强增韧的作用。  相似文献   

3.
对湿化学法制备的SiO2/3Y-TZP包裹复合粉体进行了热压烧结研究,并利用X射线衍射和透射电镜表征了烧结体的物相和显微结构。在低于1300℃,复合粉体发生瞬时粘性烧结,材料密度迅速提高,随着烧结温度的升高,SiO2和ZrO2发生反应生成ZrSiO4。在1500℃热压条件,制备了平均晶粒尺寸为350nm的ZrSiO4/3Y-TZP细晶复相材料。我们认为,在烧结过程中形成的第二相ZrSiO4,特别SiO2包裹层对抑制基体晶粒工大起主要作用。  相似文献   

4.
液相共沉淀法制备钆镓石榴石(Gd3Ga5O12,GGG)多晶原料   总被引:1,自引:0,他引:1  
采用液相共沉淀法制备了钆镓石榴石(GGG)的多晶原料,给出了液相合成GGG多晶粒的工艺步骤及其条件,就组分Gd2O3和Ga2O3的配比,滴定氧化物溶解的混合溶液使其沉淀的PH值,共沉淀后烧结温度以及烧结时间等影响GGG多晶粒合成的重要因素进行了讨论,通过和固相合成GGG多晶粒的条件比较可知,液相合成GGG多晶原料的工艺具有合成的GGG多晶料均匀充分,合成温度低与烧结时间短等优点。  相似文献   

5.
超高介电常数钛酸钡/乙炔黑复相材料的制备研究   总被引:4,自引:0,他引:4  
研究了乙炔黑/钛酸钡复合材料的烧结条件和介电性能,利用XRD、SEM和介电性能测试仪对材料的物相结构、微观形貌和介电性能进行了观察测定。分析结果表明,这种材料在空气中烧结时,其乙炔黑极易氧化挥发,难以形成钛酸钡/乙炔黑复相体系,但在烧结过程中,乙炔黑的分解挥发会在一定程度上增加液相的出现,促进陶瓷的烧结;在氮气保护下,乙炔黑可以完好地分布于钛酸钡陶瓷体中,获得结构致密的钛酸钡/乙炔黑复相陶瓷.较好的烧结温度范围为1200-1250℃,在渗流阈值附近,钛酸钡/乙炔黑复相材料介电常数值大大提高,当乙炔黑含量在0.8-2.0wt%范围内时,其介电常数达到35000以上,比纯钛酸钡提高约12倍,介电损耗可以控制在0.2-0.7之间,具有一定的使用价值。  相似文献   

6.
Al2O3-TiCp(AT)复相陶瓷材料以其优异的综合力学性能而被广泛用作金属切削刀具材料。针对AT材料传统烧结方法在能耗及周期方面的局限,本工作利用激光定向能量沉积技术开展了AT复相陶瓷材料直接增材制造的研究,系统探讨了不同TiCp比例对复相陶瓷材料微观结构和力学性能的影响。结果表明TiCp颗粒均匀分布在成型样件的基体中,掺杂TiCp细化了Al2O3晶粒。同时,由于TiCp与Al2O3基体的热膨胀失配引起裂纹出现偏转、贯穿颗粒等现象,消耗了裂纹扩展能量,进而有效抑制了AT材料直接增材过程中的裂纹扩展行为。掺杂TiCp颗粒对熔池形成冲击,在一定程度上加快了气体的逸出速率,进而提高了材料的相对密度。但TiCp含量过高将加剧其与Al2O3基体在高温时的化学反应,生成...  相似文献   

7.
基于晶界能和晶界曲率的晶粒生长驱动力理论,建立了含有烧结助剂的复相陶瓷晶粒生长的元胞自动机模型并进行了模拟。结果表明,烧结助剂对晶界有着强烈的钉扎作用,其晶粒生长指数小于未含烧结助剂时的生长指数。模拟结果与制备的含有烧结助剂的Al2O3/TiN复相陶瓷材料微观形貌组织吻合,表明所建立的模型适用于含有烧结助剂的陶瓷材料烧...  相似文献   

8.
研究了低温烧结助剂Li2O对SPS烧结AlN陶瓷烧结致密化过程、烧结体显微结构和导热性的影响.研究表明:在SPS烧结过程中,烧结助剂Li2O和Sm2O3(或Y2O3)的加入使AlN试样开始收缩并进入烧结初期阶段的温度从1550℃左右下降到1200℃以下;同时Li2O使AlN试样的烧结温度显著降低,完全致密化温度降低到1650℃左右.烧结体的显微结构表明:Li2O的加入有助于形成润湿性良好的液相,促进AlN陶瓷的液相烧结;但不利于快速烧结坯体中气体的扩散与逸出,使试样的致密度受到影响.同时,Li2O影响AlN晶粒的发育,使液相润湿性提高,晶界相均匀分布,增加了晶粒界面上的声子散射,对AlN材料的热导率产生不利影响.同时,添加1.0wt%Li2O和1.5wt%Sm2O3的AlN试样的热导率低于仅添加1.5wt%Sm2O3的试样.  相似文献   

9.
TiB2/FeMo陶瓷的显微结构与力学性能   总被引:3,自引:0,他引:3  
以Fe-Mo为助烧剂,通过热压制备了TiB2陶瓷.研究了烧结温度、烧结时间对材料显微结构和力学性能的影响,分析了烧结致密化过程.实验结果表明,随着热压烧结温度升高,材料抗弯强度、洛氏硬度出现峰值,热压烧结时间延长,抗弯强度有所下降.液相烧结的重排阶段致密化速率最快.  相似文献   

10.
反应烧结制备Ba2Ti9O20材料   总被引:1,自引:0,他引:1  
采用BaCO3和TiO2为原料粉体,经机械球磨后直接成型烧结,可以在1340℃/4h的条件下获得密度达4.49g/cm^3的单相Ba2Ti9O20材料。进一步的研究表明,采用高能球磨可以大大降低反应烧结的温度,在1250℃/4h的条件下可获得密度达4.44g/cm^3的单相Ba2Ti9O20材料。高能球磨所获得的粉体颗粒细小、均匀是反应烧结温度低的主要原因。本研究还分析了烧结过程中材料的相组成的变化过程。  相似文献   

11.
杨海涛  尚福亮  高玲 《功能材料》2006,37(11):1784-1786
运用二步气压烧结工艺成功制备了Al2O3-30%(质量分数)TiCN复合材料.材料的相对密度达到99.5%,抗折强度为772MPa,硬度为19.6GPa,断裂韧性高达5.82MPa/m2.该材料的烧结过程为固相烧结,烧结过程中TiCN颗粒几乎没有长大,而Al2O3颗粒则长大为原来3倍左右.材料在冷却过程中由于Al2O3和TiCN的热力学性能的失配而引起的界面微应力增长到50MPa左右,不会在材料中导致晶界开裂,但却足以使晶粒发生位错,从而使材料的性能得以增强.  相似文献   

12.
在高纯Al2O3粉体中添加质量分数为16%的亚微米ZrO2粉体,制备Al2O3-ZrO2复合粉体,通过X射线衍射仪、电子探针和扫描电子显微镜分别对样品的相组成和显微结构进行分析,研究不同烧结温度下亚微米ZrO2粉体对氧化铝陶瓷抗折强度和硬度的影响。结果表明,在1 450℃时无压烧结2 h,Al2O3-ZrO2复相陶瓷的晶粒粒径约为0.5μm,抗弯强度高达797 MPa,提高了46%,维氏硬度为17.9 GPa。  相似文献   

13.
Al_2O_3对全稳定ZrO_2显微组织的影响   总被引:2,自引:0,他引:2  
本文利用SEM、EDAX等测试手段,细致地研究了Al2O3对全稳定ZrO2显微组织的影响.研究的结果表明,Al2O3在全稳定ZrO2中主要分布于晶界及第二相粒子中,其在晶内的固溶度极低;Al2O3能显著地促进ZrO2晶粒的生长,从而使气孔难以消除,降低材料的密度.  相似文献   

14.
(SiC,TiB2)/B4C复合材料的烧结机理   总被引:3,自引:2,他引:1       下载免费PDF全文
研究了在热压条件下制备 (SiC, TiB2)/ B4C复合材料的烧结机理。认为烧结助剂的加入使本体系成为液相烧结,同时粉料的微细颗粒对复合材料的烧结致密也有重要贡献。分析和测量了制取的复合材料的相组成、显微结构和力学性能。结果表明,采用B4C与Si3N4和少量SiC、TiC为原料,Al2O3+Y2O3为烧结助剂,在烧结温度1800~1880℃,压力30 MPa的热压条件下烧结反应生成了SiC、TiB2和少量的BN,制取了(SiC, TiB2)/B4C复合材料。所形成的晶体显微结构为层片状。制得的试样的硬度、抗弯强度和断裂韧性分别可达HRA88.6、540 MPa和5.6 MPa·m1/2。   相似文献   

15.
尹雪亮  陈敏  王楠  徐磊  彭可武 《材料导报》2018,32(8):1357-1361
为适应材料轻量化的发展需要,在1 400~1 600℃条件下制备了MA-CA_2-CA_6复合材料,并考察了添加Y_2O_3对该复合材料烧结行为的影响。结果表明,添加的Y_2O_3固溶入了CA_6、MA相中,Y~(3+)通过取代Ca~(2+)、Mg~(2+)有效地促进了MA晶粒的提前长大,抑制了CA_6晶粒的异常长大;另一方面,添加过量的Y_2O_3与体系中的Al_2O_3反应生成Y_3Al_5O_(12)新相,使得CA_6相的生成量减少,同时由于MA相提前长大限制了CA_6相的生长空间,进一步促进了CA_6晶粒形貌由片状向等轴状趋势发展。以上因素共同作用,促进了MA-CA_2-CA_6复合材料的烧结行为。当Y_2O_3的添加量为2%时,经1 600℃保温2h烧成后,试样的显气孔率由19.2%下降至4.8%,体积密度由2.78g/cm~3上升至3.24g/cm~3,制得的MA-CA_2-CA_6复合材料中MA、CA_2、CA_6及少量Y_3Al_5O_(12)晶相呈现交织分布,显微结构致密,力学性能得到改善。  相似文献   

16.
20%纳米ZrO2(3Y)粉末加入到高纯亚微米Al2O3粉中,采用高压干压成型方法和恒速升温多阶段短保温烧结方法制备出不同烧结温度下的复相陶瓷。研究烧结温度对复相陶瓷力学性能的影响,通过XRD,EDS和SEM对复相陶瓷进行元素组成和微观结构分析。结果表明:烧结温度在很大程度上影响着复相陶瓷的力学性能和微观结构,常压烧结1600℃保温8h时,相对密度、维氏硬度和断裂韧性达到最大,分别为98.6%,18.54GPa和9.3MPa·m1/2,而基体晶粒尺寸为1.4~8.1μm,ZrO2相变量为34.6%。1600℃下复相陶瓷具有优质的微观结构,断裂方式为沿晶-穿晶混合断裂模式。ZrO2(3Y)粉体的加入,从相变增韧、内晶型颗粒增韧和裂纹偏转等多个方面提高了复相陶瓷的断裂韧性。  相似文献   

17.
Al2O3 / 3Y-TZP 层状复合材料的制备及其超塑性能   总被引:2,自引:1,他引:1       下载免费PDF全文
采用流延制膜和热压烧结工艺制备了Al2O3 / 3 Y-TZP 层状复合材料。用SEM 观察显微组织, 并采用高温深拉实验对该材料进行了超塑性能研究。结果表明: 1550 ℃热压烧结制备的材料晶粒细小, 界面结合良好;当应变速率一定时, 变形温度对Al2O3 / 3Y-TZP 层状复合材料的超塑性能具有重要影响, 1500 ℃时得到深拉成形最大高度, 温度较高和较低时超塑性能均会降低。   相似文献   

18.
作为超高温结构材料,共晶氧化物陶瓷的力学性能和显微组织密切相关。采用高温熔凝法制备Al_2O_3/ZrO_2/YAG共晶陶瓷体,研究熔体温度和结晶种子对凝固组织影响规律,运用经典形核机制和Jackson-Hunt共晶生长模型探讨了凝固组织的演变机理。研究表明,随着熔体温度升高(1750~2000℃),凝固体物相组成从α-Al_2O_3,c-ZrO_2和YAG转变为α-Al_2O_3,c-ZrO_2和亚稳相YAP。凝固组织依次经历:非共晶Al_2O_3/ZrO_2/YAG、不规则共晶Al_2O_3/ZrO_2/YAG、纳米纤维状共晶Al_2O_3/ZrO_2/YAG和复杂粗大的亚稳复合陶瓷Al_2O_3/ZrO_2/YAP。分析表明,凝固组织的演变源于异质晶核点不断钝化导致形核过冷度和凝固路径改变,所以合理选择熔体温度和结晶种子是共晶组织调控的关键。  相似文献   

19.
为适应材料轻量化的发展需要,在1 400~1 600℃温度下开发了MgAl2O4-CaAl4O7-CaAl12O19(MA-CA2-CA6)复合材料,并考察了La2O3添加对该复合材料烧结行为、显微结构和力学性能的影响。结果表明,La2O3添加剂优先固溶到MA-CA2-CA6复合材料组成晶相CA6中,促使CA6相发生晶格畸变,有效抑制了CA6晶粒沿基面的异常长大,其形貌由片状向等轴状趋势转变,促使MA-CA2-CA6复合材料制备过程中由于CA6晶粒异常长大而导致的多孔网状显微结构得以有效消除,因此也极大地改善了Mg2+的扩散条件,在一定程度上间接促进了MA晶粒的发育,有效促进了MA-CA2-CA6复合材料的烧结。经1 200℃预烧、1 600℃保温2 h烧成后,当La2O3的添加量为4wt%时,MA-CA2-CA6复合材料试样的显气孔率由19.2%下降至6.1%,体积密度由2.78 g/cm3上升至3.18 g/cm3,制得了MA、CA2、CA6晶相呈现交织分布、显微结构致密、有利于其力学性能改善的La2O3/MA-CA2-CA6复合材料,经1 200℃预烧、-1 600℃保温2 h烧成后的4wt% La2O3添加试样,其冷态抗压强度由317 MPa增加到了501 MPa。  相似文献   

20.
研究了两种微米Al2O3与纳米ZrO2复合陶瓷的裂纹扩展过程与显微结构的关系.结果表明,Al2O3晶粒内部形成纳米级或亚微米级ZrO2颗粒,是复合陶瓷的断裂模式从沿晶断裂向穿晶断裂转化的主因.ZrO2含量较低有利于Al2O3晶界迁移包裹纳米ZrO2形成内晶结构;而ZrO2含量较高使主晶相长大受到抑止,不利于形成内晶结构,趋向于沿晶断裂.裂纹穿晶扩展需要的驱动力比沿晶断裂大,故裂纹扩展阻力曲线的上升趋势更加显著.裂纹穿晶扩展路径主要取决于内晶颗粒产生的弹性应力场的性质.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号