首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
在采用熔盐热析出反应在Si3N4陶瓷表面沉积钛金属膜的基础上,对CuAg合金在金属化表面的润湿性进行了研究,结果表明,CuAg合金能对采用该方法金属化的Si3N4陶瓷实现良好润湿,在此基础上,成功实现了钛金属化Si3N4陶瓷与Si3N4陶瓷的连接并对连接工艺进行了系统研究。连接界面的TEM研究发现,界面上广泛存在Ti-Cu-Si-N相并对这种相对连接强度的影响进行了讨论。  相似文献   

2.
本文采用Y-Si-Al-O-N系氧氮玻璃对Si3N4陶瓷进行了1450,1600℃保温30min的润湿实验和连接实验,结果表明,氧氮玻璃对Si3N4的润湿性较好,1450℃时两者的热膨胀系数差异明显,而1600℃时热膨胀系数差异减小,接头附近存在扩散区,氧氮玻璃可以连接Si3N4陶瓷。  相似文献   

3.
近年来Si3N4基陶瓷刀具在铸铁的切削加工中是到较为成功的应用,但在加工碳钢等时,却产生较严重的化学磨损,不仅如此,干切削条件下陶瓷刀具和金属工件接触区产生的高温加剧了刀具与工件接触面间元素相互扩散,Si3N4颗粒的氧化及其氧化润滑、冷却作用,尤其极压抗磨添加剂的摩擦化学作用来减小陶瓷的磨损率,在销-盘试验机上考察了ZDDP和TCP两种常用抗磨添加剂的性能,结果表明,两种添加剂均具有很好的减摩抗  相似文献   

4.
介绍了一种适合于制备Si3N4陶瓷微细部件的微细制备技术.该技术主要包括Si粉的预烧结成形和微型加工以及反应烧结等三部分,结合了Si粉预烧结体的可加工性和Si3N4反应烧结所具有的近净尺寸成形特点,具有制备Si3N4陶瓷三维微细部件的优势.本研究利用该技术成功地制备了直径5mm、厚度1.2mm、叶片厚度大约70μm的Si3N4陶瓷微型转子.  相似文献   

5.
纳米SiC及Si3N4/SiC的高温等静压研究   总被引:3,自引:0,他引:3  
采用高温等静压工艺,制备了纳米结构的单相SiC及Si3N4/SiC复相陶瓷,并通过X射线衍射分析透射有高分辨电镜对其相组成及结构进行了表征。实验表明,在温度1850℃,压力200MPa条件下保温1h,要获得晶粒尺寸〈100nm,结构均匀,致密的单相SiC纳米结构陶瓷。  相似文献   

6.
通过FT-IR、XPS格荧光光谱研究了离子注入对纳米Si3N4结构的影响,发现离子注入改变了材料中游离硅(a-Si)的结构,使其变成了SiNn(n-1,2),荧光谱研究表明纳米Si3N4具有明显的量子限制效应,并且荧光峰的位置和强度存在不稳定性,根据实验结果给出了纳米Si3N4的能级结构图。  相似文献   

7.
本文深入了研究了硅烷偶联剂和SiC晶须对注射悬浮体流变性的影响,并通过对注射夺力,保压压力和保压时间三参数三水平正交实验优化工艺参数,认为保压时间对烧结体质量影响显著,从而在注射成型机口流道处设置了加热装置和水冷却装置,延长了浇口封凝时间,通过能机物气相裂解色谱分析及有机物降解差热分析,制定了例题的有机载体脱脂制度最后用无压烧结采用多步保温法,成功地制备出发动机陶瓷静叶片。  相似文献   

8.
CVI制备C/Si3N4复合材料及其表征   总被引:1,自引:0,他引:1  
以SiCl4-NH3-H2为反应体系,采用化学气相渗透法CVI)制备C/Si3N4复合材料.渗透产物的能谱和X射线衍射表明渗透产物为非晶态Si3N4,经1350℃真空热处理后,产物仍然为非晶态Si3N4;经1450℃真空热处理后,产物已经发生晶型转变,由非晶态转变为晶态的α-Si3N4和β-Si3N4.渗透温度、渗透时间、气体流量对试样致密化、增重及微观结构的影响研究表明渗透温度为900℃、SiCl4流量为30mL/min、H2流量为100mL/min、NH3流量为80mL/min、渗透时间120h、系统压力1000Pa时,气体渗透进入碳布预制体后,在预制体内反应均匀,制备的复合材料较均匀.  相似文献   

9.
Si3N4原料对形成长颗粒Ca-α-Sialon晶粒形貌的影响   总被引:2,自引:0,他引:2  
针对固定组份的Ca-α-Sialon系统Ca1.8Si6.6Al5.4O1.8n14.2),选用不同α/β比值的Si3N4原料考究了无压烧结所得材料的致密化,反应过程及显微结构的异同。  相似文献   

10.
CVI制备Si3N4p/Si3N4透波材料表征与性能   总被引:1,自引:0,他引:1  
以SiCl4-NH3-H2为反应体系,采用化学气相渗透(CVI)法制备Si3N4p/Si3N4透波材料.XRF测试表明试样主要含Si、N、O三种元素.XRD测试表明复合材料主要成分为α-Si3N4和非晶沉积物和非晶SiO2,并有微量的β-Si3N4和晶体Si,高温热处理可使非晶沉积物转变为α-Si3N4和β-Si3N4.SEM照片显示颗粒团间结合不够致密,残留气孔偏大.试样的弯曲强度最高为94MPa,介电常数为4.1-4.8.  相似文献   

11.
凝胶注模工艺制备高强度多孔氮化硅陶瓷   总被引:9,自引:0,他引:9  
采用凝胶注模成型工艺,成功地制备了具有高强度、结构比较均匀并有较高气孔率的氮化硅多孔陶瓷。本文研究了制得的多孔氮化硅的力学性能和微观结构,并讨论了获得高性能的原因。结果表明,采用适当的成型条件可制备出结构均匀、强度高、加工性能优良的坯体,烧成的多孔氮化硅陶瓷强度均>150MPa,气孔率>50%。SEM照片显示气孔是由长柱状β-Si3N4晶搭接而成的。均匀的气孔分布和柱晶结构是获得高性能的主要原因。  相似文献   

12.
仿生制备多孔氮化硅陶瓷   总被引:3,自引:0,他引:3  
以松木炭化后形成的多孔木炭为模板,经Y2O3/SiO2混合溶胶浸渍生物碳模板形成Y2O3/SiO2/C复合体,在高压氮气氛下(0.6MPa),1600°C碳热还原氮化制备出牛物形态多孔氮化硅陶瓷.借助XRD、SEM研究了烧结助剂、烧结温度、反应时间和烧结气氛对烧结产物显微结构和晶相的影响,探讨了多孔Si3N4陶瓷的反应过程和机理.结果表明,多孔si3N4陶瓷是由主晶相β-Si3N4和少量晶间玻璃相YsSi4n4O14组成;多孔Si3N4不仅保留了松木的管胞结构,还在孔道中生长出纤维状形貌的β-Si3N4颗粒;Si3N4的反应烧结过程包括α-Si3N4的形成、晶形转变(α-β相变)和晶粒生长三个阶段.在1450°C烧结的机理是气-固和气-气反应机理,在1600°C通过液相烧结的溶解-沉淀机理形成纤维状的多孔Si3N4陶瓷.  相似文献   

13.
Si3N4/BN层状复合陶瓷抗穿甲破坏实验研究   总被引:2,自引:0,他引:2  
研究了Si3N4/BN层状复合陶瓷的抗冲击破坏及抗穿甲破坏行为.研究发现:在射钉枪的作用下,处于自由状态的Si3N4/BN层状复合陶瓷比Si3N4块体陶瓷具有更好的抗冲击破坏能力.在7.62mm口径穿甲燃烧弹的作用下,Si3N4/BN层状复合陶瓷的抗穿透能力比Si3N4块体陶瓷略有下降,但仍远远高于45号钢材,而且在实弹冲击后不会像Si3N4块体陶瓷那样整体破坏.  相似文献   

14.
研究了MgO—Y2O3—Al2O3体系(相应的层状复合陶瓷试样记为A)、Y2O3—Al2O33体系(相应的层状复合陶瓷试样记为B)及La2O3—Y2O3—Al2O3体系(相应的层状复合陶瓷试样记为C)烧结助剂对Si3N4/BN层状复合陶瓷结构与性能的影响.研究表明:在相同的烧结工艺下,试样A、B、C的抗弯强度分别为700、630、610MPa,断裂功分别为2100、1600、3100J/m^2.试样A、B以脆性断裂为主,裂纹偏转现象不明显,而试样C的载荷-位移曲线显示了明显的“伪塑性”特征,裂纹的偏转与扩展现象明显.试样A中Si3N4晶粒大小不均且长径比较小,而试样C中长柱状Si3N4晶粒发育完善,有较大的长径比.  相似文献   

15.
自韧化氮化硅陶瓷的研究与进展   总被引:13,自引:0,他引:13  
本文阐述了近年来自韧化Si3N4陶瓷技术的研究情况,对自韧化Si3N4的生长机理、影响柱状Si3N4生长的各种因素,以及自韧化Si3N4的断裂韧性、强度、韦伯模数、R曲线行为、疲劳行为、蠕变行为、氧化行为、抗热震性和热导做了全面的分析和说明,提出了增韧的技术关键是控制柱状Si3N4的尺寸与玻璃相的合理运用。  相似文献   

16.
放电等离子快速烧结SiC晶须增强Si3N4BN层状复合材料   总被引:2,自引:1,他引:2  
采用放电等离子烧结技术(SPS)快速烧结了SiC晶须增强的Si3N4/BN层状复合材料。利用SPS技术,在烧结温度为1650℃,保温15min的条件下,材料的密度可达3.18g/cm^3, 抗弯强度高达600MPa,断裂功达到3500J/m^2。研究表明;特殊的层状结构,SiC晶须的拔出与折断是材料断裂功提高的主要原因。X射线衍射及扫描电子显微镜研究表明:α-Si3N4已经在短短的烧结过程中全部转变成长柱状的β-Si3N4,并且长柱状的β-Si3N4和SiC晶须具有明显的织构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号