首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydraulic conductivity and swell index tests were conducted on a conventional geosynthetic clay liner (GCL) containing sodium-bentonite (Na-B) using 5, 50, 100, 500, and 1000 mM ammonium acetate (NH4OAc) solutions to investigate how NH4+ accumulation in leachates in bioreactor and recirculation landfills may affect GCLs. Control tests were conducted with deionized (DI) water. Swell index of the Na-B was 27.7 mL/2 g in 5 mM NH4+ solution and decreased to 5.0 mL/2 g in 1000 mM NH4+ solution, whereas the swell index of Na-B in DI water was 28.0 mL/2 g. Hydraulic conductivity of the Na-B GCL to 5, 50, and 100 mM NH4+ was low, ranging from 1.6–5.9 × 10?11 m/s, which is comparable to the hydraulic conductivity to DI water (2.1 × 10?11 m/s). Hydraulic conductivities of the Na-B GCL permeated with 500 and 1000 mM NH4+ solutions were much higher (e.g., 1.6–5.2 × 10?6 m/s) due to suppression of osmotic swelling. NH4+ replaced native Na+, K+, Ca2+, and Mg2+ in the exchange complex of the Na-B during permeation with all NH4+ solutions, with the NH4+ fraction in the exchange complex increasing from 0.24 to 0.83 as the NH4+ concentration increased from 5 to 1000 mM. A Na-B GCL specimen permeated with 1000 mM NH4+ solution to chemical equilibrium was subsequently permeated with DI water. Permeation with the NH4+ converted the Na-B to “NH4-bentonite” with more than 80% of the exchange complex occupied by NH4+. Hydraulic conductivity of this GCL specimen decreased from 5.9 × 10?6 m/s to 2.9 × 10?11 m/s during permeation with DI water, indicating that “NH4-bentonite” can swell and have low hydraulic conductivity, and that the impact of more concentrated NH4+ solutions on swelling and hydraulic conductivity is reversible.  相似文献   

2.
The Sejnane reservoir in northeast Tunisia provides drinking and irrigation water. Long-term water quality monitoring data including precipitation, evaporation, temperature, pH, conductivity, dissolved oxygen, turbidity, total suspended solids, major anions and cations, fluoride, BOD5, NO3 , NO2 , NH4 +, P tot, fecal coliform bacteria, boron and heavy metals (Fe, Zn, Cu, Ni, Pb, Cr and Cd) are reported. The appropriateness for irrigation was estimated by the SAR and Na percentage and the water quality assessed using the Canadian Water Quality Index as good to excellent, which confirmed its suitability for drinking, aquatic life and irrigation purposes.   相似文献   

3.
The objective of this study is to develop a technique to remove ammonium ion from water intended for potable purposes. An ion exchange method is used with a selective ion exchanger, a natural cation zeolite, clinoptilolite. Glass columns (Fig. 1) are used for laboratory experiments. These experiments show that the NH4+ exchange capacity is very small compared to its total capacity 2.17 meq g?1; its value depends essentially on the NH4+ initial concentration and less on the Ca2+ concentration in the influent water. Figure 3 illustrates the practical exchange capacity relative to the initial concentration of ammonium ion for a soft water (Ca2+ = 35–50 mg l?1). We were particularly interested in waters weak in ammonium ion concentration (NH4+ = 1–3 mg l?1). In this case and for ~1 and 2 mg l?1 NH4+ concentration in water, the practical capacity is only 0.06 and 0.108 meq g?1 respectively. The leakage is smaller than the ECC limit (European Community Council) for drinking waters (NH4+ ? 0.5 mg l?1) and the treated volume of water to breakthrough, defined at 0.5 mg l?1 of NH4+, is ?720 BV (BV = bed volume) in both cases.In another way Fig. 6 shows that hard waters (due to Ca2+ ions) are more difficult to treat than soft waters. The practical capacity is smaller than before and the NH4+-leakage is greater. To lessen NH4+-leakage to less than 0.5 mg l?1 for soft waters down-flow and up-flow, regeneration is used. Figure 7 shows that up-flow regeneration is more attractive than down-flow regeneration.Cycle reproducibility (Figs 4 and 5) shows that the regeneration conditions satisfied our requirements: in this case, the salt consumption is 180 eq of salt per eq of NH4+ eliminated. This prompted us to try to reuse the regenerant (with NH4+ ion). An increase of NH4+-leakage is noticed in the presence of an NH4+-residual in the regenerant. This increase is more significant with down-flow regeneration.After these laboratory experiments, we carried out a semi-industrial pilot-plant. Our objective was first to verify the laboratory results and secondly to study clinoptilolite behaviour relative to the time it was used. Two plexiglass columns comprise the pilot-plant shown in Fig. 9; soft water is used for these experiments. The first column is regenerated with fresh salt solution. The cycles obtained, considering their initial NH4+-concentration, are reproduced in Fig. 10. For 2 mg l?1 NH4+ in the influent water, the leakage is about 0.2 mg l?1 and the treated volume to breakthrough (0.5 mg l?1 of NH4+) is about 750 BV. The second column is regenerated with a recycled solution. The quality of the cycles decreases with the number of reuse of the regenerant as shown in Fig. 11. Nevertheless, it is interesting to note that after 3 reuses, the performance decrease is only 25% and the leakage, although it increases is smaller than 0.5 mg l?1.Pilot results allowed us to propose a treatment of 30,000 m3 day?1; the cost per cubic meter water treated, relative to NH4+-removal, is about 0.165 FF (0.033 US $) for a plant and 0.77 FF (0.014 US $) for the same plant at the seaside. Using two serial columns decreased the cost by about 40–50%.  相似文献   

4.
When geosynthetic clay liners (GCLs) are applied as bottom liners at waste containment facilities, they are naturally prehydrated by absorbing moisture in the underlying base layers. In order to evaluate the effects of cations contained in waste leachates, this study investigated the effects of the water content distribution of the GCLs prehydrated with actual soils on their hydraulic conductivities against CaCl2 solutions. The “prehydration tests”, which were conducted prior to the hydraulic conductivity tests, showed that the water content distribution of the prehydrated GCLs depends on the properties of the GCLs and the base layers. In particular, drastic differences between GCLs with powdered bentonite and GCLs with granular bentonite were observed in the prehydration water content and its distribution. Prehydrated GCLs with powdered bentonite had a higher water content and a more homogenous distribution than those with granular bentonite. The hydraulic conductivity tests showed that most of the prehydrated GCLs exhibit a low hydraulic conductivity of k?1.0×10-8 cm/s against CaCl2 solutions with 0.1-0.5 M. However, GCLs with granular bentonite may be difficult to homogeneously prehydrate and exhibit an unstable hydraulic conductivity, which varies from k=2.9×10-9 cm/s to k=1.5×10-6 cm/s. The homogeneity of the water content distribution has been considered an important factor to obtain a required barrier performance under prehydration conditions, which are naturally generated in actual sites.  相似文献   

5.
The composition of the flue gas deposits from an Otto-cycle and a diesel engine was investigated by SIMS. The flue gas aerosol was collected by impactors directly from the tail pipe of the motor vehicles. In order to prevent the condensation of water vapor and the coagulation of the aerosol, a dilution stage was placed between the tail pipe and the impactor.The main constituents of the flue gas deposits were unburned hydrocarbons and carbonaceous materials. Moreover, in the deposits produced by the Otto-cycle engine, Na+, Cl?, Ca+ and Br? were detected. In addition, the deposits of the diesel engine contained H2O+ and K+, but no Br+. No involatile compounds of sulfur or nitrogen were detected in the flue gas aerosol deposits of either engine.  相似文献   

6.
Chlorine and chloramines are volatile compounds which are stripped (“flashed off”) from recirculating cooling water systems by the large volumes of air which flow through the water in the cooling tower. The fraction of a volatile gas, such as hypochlorous acid (HOCl), which is removed by stripping is determined by Henry's constant H for that gas: H = XG/XL, where XG is the mole fraction of the gas in the air and XL is the mole fraction of the gas in the water. We have measured H for HOCl, OCl?, NH3, NH2Cl, NHCl2 and NCl3 at 20 and 40°C. We found H = 0.076 for HOCl, compared to 0.71 for NH3, at 20°C. At 40°C, H was about 2.5-fold larger for HOCl. This means that 10–15% of the HOCl is stripped from cooling water on each passage through a typical cooling tower. The measured flashoff of free available chlorine (HOCl + OCl?) was markedly pH-sensitive with a pK of 7.5, exactly as expected if HOCl is volatile but OCl? is not. The data permit a quantitative understanding of the fate of chlorine in cooling systems. The values of H at 40°C for NH2Cl, NHCl2 and NCl3 were 1.28, 3.76 and 1067. This means that all of the chloramines are quickly stripped in a cooling tower.  相似文献   

7.
This paper presents new proposals in the evaluation and determination of the optimum materials suitable for use in the design and development of firefighter protective clothing by simultaneously addressing the conflicting factors of thermal protection [heat transfer index (HTI), radiant heat transfer index (RHTI) and thermal threshold index (TTI)] and anti-heat stress [water vapor resistance (WVR) and total heat loss (THL)]. To achieve this, this paper proposes new indices for the materials, two types of “total performance” indices, which are defined as the sum and the product of the competing factors of thermal protection and anti-heat stress. The results showed that the candidate materials of firefighter protective clothing were easily rated when the new indices were applied. Of five candidate materials viz. A, B, B1, B2 and C, the B sample, with values for HTI24?=?13.2?±?0.2 s, RHTI24?=?18.0?±?0.8 s, TTI?=?1132?±?33 J/m2, WVR?=?17.5?±?0.3 m2 Pa/W and THL?=?266.2?±?4.1 W/m2, was found to exhibit the best total performance. However, the methods proposed to the scientific community in this paper have so far been validated on a limited data set only, and will require further validation by a wider group of researchers and with more samples. Lastly, comments on ISO 11999-3:2015 were also made for the further improvement and development of technical standards.  相似文献   

8.
R′w or DnT,w? Considerations regarding sound protection notation and consequences for the revision of DIN 4109. Since its publication in 1989, DIN 4109 “Sound insulation in buildings” has be come a tried and tested tool for designing sound protection measures in domestic buildings and offices. Since 1992 European standards have been harmonised. For sound protection this meant the abolition of component tests in the laboratory based on “practical flanking transmission”. The German sound protection concept, which was based on the assumption of transferability between R′w values measured in the laboratory to the expected sound insulation R′w of the tested construction element on site, has thus become obsolete. Following the replacement of DIN 52210 by DIN EN ISO 140, laboratory measurements no longer involve the sound protection value R′w, but only the sound insulation value Rw. This article discusses issues relating to this development.  相似文献   

9.
The Tuul River, which provides water for the daily needs of many residents of Ulaanbaatar, Mongolia, has been increasingly polluted by wastewater from the city's sewage treatment plant. Information on water movement and the transformation of water-borne materials is required to alleviate the deterioration of water quality. We conducted a synoptic survey of general water movement, water quality including inorganic nitrogen concentrations, and isotopic composition of nitrogen (δ15N-NO3, δ18O-NO3, and δ15N-NH4+) and water (δ18O-H2O) in a wetland area that receives wastewater before it enters the Tuul River. We sampled surface water, groundwater, and spring water along the two major water routes in the wetland that flow from the drain of the sewage treatment plant to the Tuul River: a continuous tributary and a discontinuous tributary. The continuous tributary had high ammonium (NH4+) concentrations and nearly stable δ15N-NH4+, δ15N-NO3, and δ18O-NO3 concentrations throughout its length, indicating that nitrogen transformation (i.e., nitrification and denitrification) during transit was small. In contrast, NH4+ concentrations decreased along the discontinuous tributary and nitrate (NO3) concentrations were low at many points. Values of δ15N-NH4+, δ15N-NO3, and δ18O-NO3 increased with flow along the discontinuous route. Our results indicate that nitrification and denitrification contribute to nitrogen removal in the wetland area along the discontinuous tributary with slow water transport. Differences in hydrological pathways and the velocity of wastewater transport through the wetland area greatly affect the extent of nitrogen removal.  相似文献   

10.
Research was undertaken for the purpose of selecting a growth rate model, i.e. a function relating specific growth rate, μ, to substrate concentration, S, for acclimated heterogeneous microbial populations metabolizing a phenolic waste and to gain an insight into the expected average and range of values of the kinetic “constants” for the selected model. Various sources of seed populations were employed and batch growth curves were generated using phenol as sole source of carbon. Comparison of the fit of the data obtained from 113 growth curves to five inhibition functions failed to distinguish a function which was statistically superior to the others. Since the Haldane equation proved to be the most readily adapted to curve-fitting procedures and insertion into mass balance equations for reactor performance, it was selected as the best representation of the experimental data. The values of the three pertinent biokinetic constants were as follows: μmax, range = 0.08–0.36 h?1, mean = 0.19 h?1; KS, range = 1.3–266 mg l?1, mean = 75 mg l?1; Ki, range = 66–1463 mg l?1, mean 449 mg l?1. Analysis of chemostat performance using growth constants determined in separate batch growth studies with seed from the chemostat showed that reasonably accurate prediction of the dilution rate at which the system attains μ1, the peak or critical specific growth rate designated by the Haldane equation, could be made. This finding indicates that batch growth rate data can be used for predictive control of activated sludge reactors treating toxic wastes.  相似文献   

11.
Using bulk deposition, throughfall, stemflow, soil infiltration, runoff water, litterfall data, ion mass budgets were calculated for a catchment area and for mature spruce and pine stands on it. The ions considered in mass balances were Na+, K+, Ca2+, Mg2+, SO42−, NO3, NH4+, HCO3, and H+. Corresponding fluxes for the budgets were calculated as an average for 6 years of studies (1995–2000). Annual input–output balances of all nutrients were positive at the plot-scale, so that leaching into soil water was less than the corresponding deposition load. Deposition of Ca, Mg, Na and S into soil by precipitation exceeded input through litterfall. A proton budget approach shows that the main soil buffering process is retention of sulphate, which clearly exceeds weathering. At the catchment-scale, input–output analysis shows essential output of cations due to weathering from the soil. A distinct change in input–output balance of sulphate during study period was evident. The retention of sulphur has been replaced by its release from the catchment area.  相似文献   

12.
The dissolved component of the apparent silver complexation capacity was determined for Susquehanna and Chenango River water samples collected over a 3-month period in the vicinity of Binghamton, New York. Silver ion activities detected by the Ag+/S2? ion selective electrode during potentiometric titration of the river water with AgNO3 were lower than Ag+ activities calculated with an inorganic equilibrium speciation model. The maximum difference in Ag+ activity, which ranged from 1.5 × 10?8 to 8.4 × 10?8, was attributed to the presence of a constituent or constituents in the river water which strongly bind Ag, perhaps dissolved organic matter and/or colloidal material. Variation in apparent complexation capacity between river water samples was explained by different concentrations of the ligands complexing Ag. A tentative extrapolation of the dissolved Ag speciation to Ag concentrations in natural river water suggested that most of the Ag would be complexed by Cl? and an unidentified constituent or constituents.  相似文献   

13.
The influence of CaCl2 and NaCl from internal and external sources on the chloride threshold value for the corrosion of steel reinforcement in concrete has been investigated. The onset of active corrosion for the steel reinforcement has been detected by half-cell potential and linear polarization methods. Also, the threshold value with different indices, such as free chlorides, [Cl?]/[OH?], total chlorides and [Cl?]/[H+] has been measured. It has been found that the chloride threshold values for the corrosion of the specimens with CaCl2 and NaCl from different sources depend on the indices. Especially, the critical [Cl?]/[H+], i.e. the ratio of acid soluble chlorides to acid neutralisation capacity irrespective of the type and different sources of chloride salt approximately keeps constant at 0.02.  相似文献   

14.
Coastal marine waters have a wide variety of important human uses and therefore must be protected against contamination. The main sources of their pollution (by toxic substances and nutrients) are the discharge of municipal sewage and runoff from agricultural areas. Excessive nutrient enrichment in the form of inorganic nitrogen (NH4+, NO2?, NO3?) may be directly estimated by the use of ion selective electrodes (ISE), whereas the inorganic phosphorus can only be estimated indirectly. The total content of N, P and heavy metals may be estimated after decomposition of organic substances, using the ISE method in the case of P and N determination and the differential pulse anodic stripping voltammetry (DPASV) method for determining the heavy metals.  相似文献   

15.
The study of water flow through soils is an important aspect of soil mechanics. Past experience with glacial clay till deposits investigated in central and southern Saskatchewan has demonstrated that in situ saturated hydraulic conductivities vary from about 10?6 to 10?9 cm/s. In some applications and regulatory references, an accepted practice in the past is to assume that the field hydraulic conductivity value for a soil liner will be one order of magnitude (i.e. ten times) greater than the confirmed laboratory hydraulic conductivity value for a remoulded sample composed of the same soil. In fact, experience has shown that measured as-built field hydraulic conductivity values for a soil liner can be several orders of magnitude greater than the laboratory value if the liners are poorly constructed and, therefore, would not be compliant with regulatory criteria. The reliability of artificially applying any correction factor to a laboratory value to obtain an assumed field value is, therefore, questionable. This paper describes field and laboratory investigations that were conducted to characterize the general properties and the hydraulic conductivity of a glacial clay till soil liner. For this example case study, laboratory measurements of the hydraulic conductivity for remoulded soil samples were undertaken using a flexible wall permeameter (FWP). Air-entry permeameter (AEP) tests were performed on a soil test pad prior to construction and then on the completed soil liner immediately after construction to measure the as-built hydraulic conductivity. Both the FWP and AEP tests resulted in comparable hydraulic conductivity values that were in the order of 10?8–10?9 cm/s. A preceding and preliminary empirical approach was also found to be reasonable for purposes of determining soil suitability and estimating the “achievable” hydraulic conductivity value. The preliminary estimate was determined to be conservatively greater than the values determined by both the FWP and AEP test methods.  相似文献   

16.
A procedure is described based on selective organic-phase extraction coupled with differential pulse electrochemical techniques for the consecutive determination of Me4Pb, Et4Pb, Me3Pb+, Et3Pb+, Me2Pb2+, Et2Pb2+ and inorganic Pb2+, present in a water sample.  相似文献   

17.
Rate constants of reactions of ozone with non-ionized solutes, such as aliphatic alcohols, olefins, chlorosubstituted ethylenes, substituted benzenes and carbohydrates, have been determined from the absolute rates with which ozone reacts in the presence of various concentrations of these compounds in water. They have been tested by comparison with the relative rates by which pairs of these solutes are transformed by ozone. Different experimental methods have been developed to determine such rate constants in the range from 10?2 to 105 M?1 s?1. Interferences between the direct reactions of ozone and reactions due to its preliminary decomposition to secondary oxidants could be eliminated. The kinetics of all the reactions studied are first order with respect to ozone and solute concentration. The rate constants of many types of organic compounds in water are of the same order of magnitude as in organic solvents. Substituted benzenes, however, react in water about 100 times faster. They obey a linear free energy relationship with p = ?3.1 when based on δp+ values. Comparisons of rate constants with chemical structures of the reacting groups show that all reactions of ozone are highly selective and electrophilic. The kinetic data allow explanation of the chemical effects of ozone observed in water treatment practice.  相似文献   

18.
The high ionic strength of the porewater in red mud (bauxite liquor from digestion) can suppress swelling of montmorillonite, resulting in geosynthetic clay liners (GCLs) that are too permeable to be effective as liners in red mud disposal facilities. Bentonite-polymer composite GCLs (BPC GCLs) have been developed as more resilient lining materials, and some BPC GCLs have been shown to have very low hydraulic conductivity to bauxite liquors that have extreme ionic strength and pH. In this study, a nationwide investigation was conducted in China to evaluate the characteristics of bauxite liquor in Chinese impoundments, and to evaluate the suitability of GCLs containing granular sodium bentonite or BPCs for containment. Hydraulic conductivity tests were conducted on six BPC GCLs with two characteristic Chinese bauxite liquors that are hyperalkaline (pH > 12) and had ionic strengths of 76.9 mM and 620.3 mM. The BPC GCLs had hydraulic conductivity ranging from 10?8-10?12 m/s, which is higher than the hydraulic conductivity of BPC GCLs to deionized water (10?12-10?13 m/s), but lower than the hydraulic conductivity of conventional GCLs with granular sodium bentonite GCLs to the same liquors (10?7-10?8 m/s). The hydraulic conductivity of the BPC GCLs depends on the chemical properties of the leachate, the polymer loading, and the type of polymer. Microstructural analysis by scanning electron microscopy (SEM) suggests that the hydraulic conductivity of BPC GCLs is controlled by pore-blocking by polymer hydrogel, which is affected by the bauxite liquor.  相似文献   

19.
The objective of this study is to develop a technique to remove ammonium ion from water intended for potable purposes. An ion exchange method is used with a selective ion exchanger, a natural cation zeolite, clinoptilolite. Glass columns (Fig. 1) are used for laboratory experiments. These experiments show that the NH4+ exchange capacity is very small compared to its total capacity 2.17 meq g−1; its value depends essentially on the NH4+ initial concentration and less on the Ca2+ concentration in the influent water. Figure 3 illustrates the practical exchange capacity relative to the initial concentration of ammonium ion for a soft water (Ca2+ = 35–50 mg l−1). We were particularly interested in waters weak in ammonium ion concentration (NH4+ = 1–3 mg l−1). In this case and for 1 and 2 mg l−1 NH4+ concentration in water, the practical capacity is only 0.06 and 0.108 meq g−1 respectively. The leakage is smaller than the ECC limit (European Community Council) for drinking waters (NH4+ 0.5 mg l−1) and the treated volume of water to breakthrough, defined at 0.5 mg l−1 of NH4+, is 720 BV (BV = bed volume) in both cases.In another way Fig. 6 shows that hard waters (due to Ca2+ ions) are more difficult to treat than soft waters. The practical capacity is smaller than before and the NH4+-leakage is greater. To lessen NH4+-leakage to less than 0.5 mg l−1 for soft waters down-flow and up-flow, regeneration is used. Figure 7 shows that up-flow regeneration is more attractive than down-flow regeneration.Cycle reproducibility (Figs 4 and 5) shows that the regeneration conditions satisfied our requirements: in this case, the salt consumption is 180 eq of salt per eq of NH4+ eliminated. This prompted us to try to reuse the regenerant (with NH4+ ion). An increase of NH4+-leakage is noticed in the presence of an NH4+-residual in the regenerant. This increase is more significant with down-flow regeneration.After these laboratory experiments, we carried out a semi-industrial pilot-plant. Our objective was first to verify the laboratory results and secondly to study clinoptilolite behaviour relative to the time it was used. Two plexiglass columns comprise the pilot-plant shown in Fig. 9; soft water is used for these experiments. The first column is regenerated with fresh salt solution. The cycles obtained, considering their initial NH4+-concentration, are reproduced in Fig. 10. For 2 mg l−1 NH4+ in the influent water, the leakage is about 0.2 mg l−1 and the treated volume to breakthrough (0.5 mg l−1 of NH4+) is about 750 BV. The second column is regenerated with a recycled solution. The quality of the cycles decreases with the number of reuse of the regenerant as shown in Fig. 11. Nevertheless, it is interesting to note that after 3 reuses, the performance decrease is only 25% and the leakage, although it increases is smaller than 0.5 mg l−1.Pilot results allowed us to propose a treatment of 30,000 m3 day−1; the cost per cubic meter water treated, relative to NH4+-removal, is about 0.165 FF (0.033 US $) for a plant and 0.77 FF (0.014 US $) for the same plant at the seaside. Using two serial columns decreased the cost by about 40–50%.  相似文献   

20.
《Fire Safety Journal》2004,39(5):375-382
A “chemical” flame height has been defined from the ratio of CO to CO2 yields, yCO/yCO2, and has been shown to be functionally identical with previous results based on flame luminosity. The chemical flame heights have been determined for propane and acetylene data for fire Froude numbers, Q*, ranging from 0.1 to 60,000. The functional dependence of Zf/D on Q* was found to be in excellent agreement with previous luminous flame height correlations. It was thus concluded that the present methodology can be used to accurately quantify the luminous flame height for well-ventilated diffusion flames of surface fires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号