首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
镁合金AZ31轧制板材的单向拉伸行为   总被引:1,自引:0,他引:1  
通过单向拉伸试验研究了AZ31镁合金轧制板在不同温度和应变速率下的力学性能。根据镁合金在50℃~400℃范围内的单向拉伸曲线分析结果,找出AZ31镁合金的抗拉强度、伸长率随变形温度、变形速度的变化规律。结果表明:AZ31镁合金轧制板的塑性随着应变速率的降低有明显提高;温度的升高可明显改善轧制板的塑性;当应变速率为1.5×10-2s-1、温度为400℃时,伸长率达到123.9%。  相似文献   

2.
研究了挤压态镁合金在280~400℃和1×10-4~1×10-1s-1的超塑性流变行为。结果表明,热挤压可以明显减小AZ91D镁合金的晶粒尺寸;在340℃、1×10-4s-1的变形条件下,其最大伸长率达到487%,应变速率敏感指数m可达0.51。挤压态AZ91D镁合金超塑性变形的主要机制为晶界滑移机制。通过光镜和扫描电镜(SEM)观察了AZ91D镁合金超塑性变形前后的微观组织和断口形貌及其拉伸断裂机制。  相似文献   

3.
在Gleeble-3500热模拟试验机上对AZ31B镁合金薄板(0.6 mm)拉伸试样在100~350℃的温度范围和1×10-1~1×10-3s-1的应变速率范围内进行了的单向拉伸实验,根据实验结果对AZ31B镁合金薄板的力学性能进行了分析.结果表明:AZ31B镁合金薄板在较低变形温度100~150℃时,应变速率对流动应力的影响不大;相比之下应变速率对AZ31B镁合金的断裂伸长率却有一定的影响,提高应变速率会降低材料的伸长率;在较高变形温度(200℃以上)时,应变速率对流动应力的影响比较明显,表现出显著的应变速率敏感性.  相似文献   

4.
AZ31B镁合金板材超塑性变形与断裂机理研究   总被引:3,自引:0,他引:3  
研究了工业态热轧AZ31B镁合金板材的超塑性及其变形机制,在应变温度为723K,应变速率为1×10-3s-1的试验条件下,其最大断裂伸长率达到216%,应变速率敏感性指数达0.36。研究结果表明:晶界滑动(GBS)是工业态热轧AZ31B镁合金超塑性的主要变形机制,变形初期有动态再结晶发生,断裂是由晶界处形成的空洞不断长大、连接而引起的。  相似文献   

5.
工业态AZ31镁合金的超塑性变形行为   总被引:33,自引:2,他引:33  
研究了工业态AZ31镁合金在温度 6 2 3~ 72 3K和应变速率 1× 10 -5~ 1× 10 -3 s-1范围内的超塑性变形行为。结果表明 ,工业态AZ31镁合金表现出良好的超塑性 ,其最高断裂延伸率达到 314%,应变速率敏感指数达 0 .4。显微组织观察和断口分析表明 ,工业态AZ31镁合金超塑变形主要由晶界滑动机制所控制 ,同时 ,动态再结晶也是合金超塑变形的一种协同机制。  相似文献   

6.
利用挤压成形工艺在300 ℃下将AZ31镁合金铸锭挤制为细晶板材,将制成的拉伸试样在250 ℃下分别以不同的应变速率进行等应变速率拉伸,研究了试样的超塑性变形性能,采用光学显微镜和扫描电镜分别观察了变形后试样的显微组织和断口形貌。研究结果表明,在250 ℃和2×10-2 s-1应变速率下,AZ31镁合金试样的伸长率达到了290%,实现了较低温度和较高应变速率下的超塑性变形,有利于节约能源和提高效率;在250 ℃下以2.5×10-4 s-1应变速率进行拉伸变形,试样的伸长率最大,达到了390%,最大伸长率下AZ31镁合金的显微组织显示,变形后试样的晶粒仍保持等轴状,但晶粒尺寸比原始晶粒增大约一倍,试样断口形貌表现为典型的韧窝型穿晶断裂特征。  相似文献   

7.
研究不具有典型细晶组织的挤压态Mg-7.0Al-0.2Zn(AZ70)合金的超塑性及其变形机制。结果表明:AZ70镁合金具有良好的超塑性变形行为。在380℃及1×10-3s-1的最佳变形条件下,最大伸长率为191.5%。380℃时具有良好的高应变速率(1×10-2s-1)超塑性变形能力,伸长率为161.5%。晶粒尺寸随温度的升高与应变速率的降低而增大。超塑性变形是以晶界滑移为主,表现为变形过程中晶粒组织基本保持等轴,且孔洞沿晶界形成并长大。同时孔洞的长大及连接导致最终断裂,断口形貌显示为典型的韧窝断裂特征。  相似文献   

8.
梁立超  白彧  葛宜银 《铸造》2005,54(7):695-697
研究了挤压态AZ81镁合金的超塑变形行为及其变形机制.首先将AZ81镁合金进行热挤压处理,然后在不同的温度和初始应变速率下进行了超塑性拉伸试验,计算了应变速率敏感性指数.通过观察和比较不同温度下材料的稳态流变现象,分析了超塑变形机制随着温度的上升而发生变化的原因.挤压态AZ81的超塑性变形机制是晶界滑移,而孔洞的形核与断裂是变形的协调机制.  相似文献   

9.
在温度为18℃~450℃、应变速率10-2s-1~10-4s-1范围内,对挤压态AZ31镁合金沿挤压方向进行拉伸试验。结果表明,当温度T≤100℃时,应变速率对试样伸长率影响较小,断口分析表明试样为脆性断裂;当温度为250℃~400℃,伸长率随应变速率的减小而迅速增加,变形激活能为170 k J/mol,交滑移控制的动态再结晶是导致塑性提高的主要原因;温度为400℃~450℃、应变速率10-4s-1拉伸时,伸长率下降,原因是高温、长时间拉伸会引起空洞扩张,降低了有效承载面积,导致塑性降低。  相似文献   

10.
挤压态AZ31B镁合金的超塑性研究   总被引:1,自引:0,他引:1  
郭超  杨永顺  周新平 《铸造技术》2007,28(2):242-244
将铸态镁合金AZ31B在300℃以1∶6的挤压比进行挤压,在310-460℃温度范围内,以1×10^-1-1×10^-4s^-1初始应变速率,对挤压后试样作单向拉伸试验,研究AZ31B镁合金的超塑性流变行为。扫描电镜对拉伸后的试样断口进行分析。试验表明,经过热挤压可以改善镁合金的拉伸力学性能,在415℃、应变速率为1×10^-4s^-4时挤压态镁合金具有良好的超塑性,伸长率达到了380%;断口分析表明,AZ31B的超塑变形的主要机制为晶界滑移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号